Plantar heel pain is often managed through podiatric and physical therapy interventions. Numerous differential diagnoses may be implicated in patients presenting with plantar heel pain; however, symptoms are often attributed to plantar fasciitis. Abductor hallucis, flexor digitorum brevis, and quadratus plantae share proximal anatomic attachment sites and mechanical function with the plantar fascia. Although these plantar intrinsic muscles each perform isolated digital actions based on fiber orientation and attachment sites, they function collectively to resist depression of the lateral and medial longitudinal arches of the foot. Overuse injury is the primary contributing factor in tendinopathy. The close anatomic proximity and mechanical function of these muscles relative to the plantar fascia suggests potential for proximal plantar intrinsic tendinopathy as a result of repetitive loading during gait and other weightbearing activities. To date, this diagnosis has not been proposed in the scientific literature. Future studies should seek to confirm or refute the existence of proximal plantar intrinsic tendinopathic changes in patients with acute and chronic plantar heel pain through diagnostic imaging studies, analysis of lactate concentration in pathologic versus nonpathologic tendons, and response to specific podiatric and physical therapy interventions germane to tendinopathy of these muscles.

Download full-text PDF

Source
http://dx.doi.org/10.7547/17-198DOI Listing

Publication Analysis

Top Keywords

plantar intrinsic
16
plantar heel
16
heel pain
16
proximal plantar
12
plantar
10
intrinsic tendinopathy
8
podiatric physical
8
physical therapy
8
therapy interventions
8
attachment sites
8

Similar Publications

Phytic Acid-Induced Gradient Hydrogels for Highly Sensitive and Broad Range Pressure Sensing.

Adv Mater

January 2025

Laboratory of Advanced Theranostic Materials and Technology, Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, Ningbo, 315201, P. R. China.

Ionic conductive hydrogels have emerged as an excellent option for constructing dielectric layers of interfacial iontronic sensors. Among these, gradient ionic hydrogels, due to the intrinsic gradient elastic modulus, can achieve a wide range of pressure responses. However, the fabrication of gradient hydrogels with optimal mechanical and sensing properties remains a challenge.

View Article and Find Full Text PDF

Background: This study investigated the effect of various offloading devices commonly used for the management of diabetic foot ulcerations on peak plantar pressure and pressure-time integral of the contralateral limb.

Methods: A quantitative, randomised and within-subject repeated measures study was conducted in an outpatient gait laboratory. Outpatients with unilateral diabetic foot ulcers and adequate perfusion to the lower limb without an intrinsic limb-length discrepancy who were able to walk were recruited for the study.

View Article and Find Full Text PDF

Torque-angle relationships of human toe flexor muscles highlight their capacity for propulsion in gait.

J Exp Biol

January 2025

Public Health and Sport Sciences, Faculty of Health and Life Sciences, University of Exeter, St Luke's Campus, Exeter, EX1 2LU, UK.

Human proficiency for bipedal locomotion relies on the structure and function of our feet, including the interplay between active muscles and passive structures acting on the toes during the propulsive phase of gait. However, our understanding of the relative contributions of these different structures remains incomplete. We aimed to determine the distinct toe-flexion torque-angle relationships of the plantar intrinsic muscles (PIMs), extrinsic muscles and passive structures, therefore offering insight into their force-generating capabilities and importance for walking and running.

View Article and Find Full Text PDF

Background: Athletes need to enhance their foot function to improve their performance and prevent injuries and disability. Although foot function is believed to be improved by stabilizing the body on an unstable surface (e.g.

View Article and Find Full Text PDF

Reliability of direct and indirect measures of intrinsic foot muscle strength in adults: A systematic review.

Clin Biomech (Bristol)

January 2025

Department of Rehabilitation Sciences, Musculoskeletal Rehabilitation Research Group, KU Leuven, Spoorwegstraat 12, 8200 Brugge, Belgium; Haute Ecole Leonard De Vinci, Division of Podiatry, Avenue E. Mounier 84, 1200 Sint-Lambrechts-Woluwe, Belgium. Electronic address:

Background: The aim of this systematic review was to summarize the existing literature on evaluation methods developed to measure intrinsic foot muscle strength in both symptomatic and asymptomatic individuals. The specific objectives was to provide an overview of the evaluation methods with their protocols and reliability.

Methods: Five databases (PubMed, Embase, Web of Science, Cochrane Library and SPORTDiscus) were searched up to August 2023.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!