The combination of π-conjugated organic compounds and Pt(ii)-acetylides is a powerful strategy for the production of functional optoelectronic materials. The presence of the heavy element, Pt, in these compounds enhances electronic delocalization generally resulting in low-energy absorption and emission maxima and often leads to intersystem crossing, resulting in phosphorescence. When boron complexes of N-donor ligands, such as boron dipyrromethenes (BODIPYs), are involved the molecular and polymeric materials produced have properties that are advantageous for their use as oxygen-sensors, in triplet-triplet annihilation, and as the functional components of photovoltaics. Based on these exciting results, we endeavored to thoroughly examine the effect of Pt(ii)-acetylide conjugation on the properties of BF2 formazanate dyes, which offer improved redox properties and red-shifted absorption and emission bands compared to many structurally related BODIPYs. The results showed that phosphine-supported Pt(ii)-acetylide incorporation enhanced electronic conjugation, rendering the electrochemical reduction of the BF2 formazanate dyes more difficult, while also red-shifting their absorption and emission maxima. Unlike similar BODIPYs, the presence of Pt(ii) did not facilitate phosphorescence, but rather quenched fluorescence. This study provides significant insights into structure-property relationships and guiding principles for the design of BF2 formazanate dyes, a rapidly emerging family of readily accessible optoelectronic materials.

Download full-text PDF

Source
http://dx.doi.org/10.1039/c9dt03417jDOI Listing

Publication Analysis

Top Keywords

formazanate dyes
16
absorption emission
12
bf2 formazanate
12
optoelectronic materials
8
emission maxima
8
altering optoelectronic
4
properties
4
optoelectronic properties
4
properties boron
4
boron difluoride
4

Similar Publications

Article Synopsis
  • ????-Conjugated polymers, particularly those with acetylenic units, have narrow optical band gaps and adjustable energy levels, making them suitable for organic electronics.
  • This study explores the structure-property relationships of these polymers by synthesizing Glaser-Hay-coupled model compounds and random copolymers with BF formazanate, fluorene, and bis(alkoxy)benzene units.
  • The resulting materials demonstrate notable redox activity and broad absorption profiles, indicating their potential use in photovoltaics and light-harvesting technologies.
View Article and Find Full Text PDF

Reengineering of Donor-Acceptor-Donor Structured Near-Infrared II Aggregation-Induced Emission Luminogens for Starving-Photothermal Antitumor and Inhibition of Lung Metastasis.

ACS Nano

October 2024

Department of Chemistry, Hong Kong Branch of Chinese National Engineering Research Center for Tissue Restoration and Reconstruction, Division of Life Science, State Key Laboratory of Molecular Neuroscience, and Department of Chemical and Biological Engineering, The Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong 999077, P. R. China.

Electron acceptor possessing strong electron-withdrawing ability and exceptional stability is crucial for developing donor-acceptor-donor (D-A-D) structured aggregation-induced emission luminogens (AIEgens) with second near-infrared (NIR-II) emission. Although 6,7-diphenyl-[1,2,5] thiadiazolo [3,4-] quinoxaline (PTQ) and benzobisthiadiazole (BBT) are widely employed as NIR-II building blocks, they still suffer from limited electron-withdrawing capacity or inadequate chemo-stability under alkaline conditions. Herein, a boron difluoride formazanate (BFF) acceptor is utilized to construct NIR-II AIEgen, which exhibits a better overall performance in terms of NIR-II emission and chemo-stability compared to the PTQ- and BBT-derived fluorophores.

View Article and Find Full Text PDF

Since the Nobel prize winning discovery that polyacetylene could act as a semiconductor, there has been tremendous efforts dedicated to understanding and harnessing the unusual properties of π-conjugated polymers. Much of this research has focused on the preparation of oligoynes and polyynes with well-defined numbers of repeating alkyne units as models for carbyne. These studies are usually hampered by a structure-property relationship where the stability of the resulting materials decrease with the incorporation of additional alkyne units.

View Article and Find Full Text PDF

Advancements in boron difluoride formazanate dyes for biological imaging.

Curr Opin Chem Biol

August 2024

Department of Chemistry, Rice University, 6100 Main Street, Houston, Texas, 77005, USA; SynthX Center, Rice University, 6100 Main Street, Houston, TX, 77005, USA; Department of Biosciences, Rice University, 6100 Main Street, Houston, TX, 77005, USA; Department of Bioengineering, Rice University, 6100 Main Street, Houston, TX, 77005, USA. Electronic address:

In the past decade, boron difluoride formazanate dyes have gained considerable attention due to their redox activity, high absorption and emission intensities, chemical stability across a broad range of conditions, and the ease to fine-tune their optical and electronic characteristics. Over the past five years, boron difluoride formazanate dyes have demonstrated their extended emission wavelengths in the near-infrared region, suggesting their potential applications in the field of biological imaging. This review provides an overview of the evolution of boron difluoride formazanate dyes, encompassing the structural variations and corresponding optical properties, while also highlighting their current applications in biological imaging fields.

View Article and Find Full Text PDF

Photodynamic therapy (PDT) is a photochemical-based treatment approach that involves using light to activate photosensitizers (PSs). Attractively, PDT is one of the alternative cancer treatments due to its noninvasive technique. By utilizing the heavy atom effect, this work modified a class of formazan dyes to improve intersystem crossing (ISC) to improve reactive oxygen species (ROS) generation for PDT treatment.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!