With regard to their ease of harvest and common developmental origin, dental pulp stem cells (DPSCs) may act as a favorable source of stem cells in generation of nerves. Moreover; cellular migration and differentiation as well as survival, self-renewal, and proliferation of neuroprogenitor species require the presence of the central nervous system (CNS) mitogens including EGF and bFGF. Accordingly, the possibility of the induction of neuronal differentiation of DPSCs by EGF and bFGF was evaluated in the present study. DPSCs were treated with 20 ng/ml EGF, 20 ng/ml bFGF, and 10 µg/ml heparin. In order to further induce the neuroprogenitor differentiation, DPSC-derived spheres were also incubated in serum-free media for three days. The resulting spheres were then cultured in high-glucose Dulbecco's Modified Eagle Medium (DMEM) with 10% FBS. The morphology of the cells and the expression of the differentiation markers were correspondingly analyzed by quantitative polymerase chain reaction (qPCR), western blotting, and immunofluorescence (IF). The EGF/bFGF-treated DPSCs showed significant increase in the expression of the neuroprogenitor markers of Nestin and SRY (sex determining region Y)-box 2 (SOX2), 72 h after treatment. The up-regulation of Nestin and SOX2 induced by growth factors was confirmed using western blotting and IF. The cultures also yielded some neuron-like cells with a significant rise in Nestin, microtubule-associated protein 2 (MAP2), and Neurogenin 1 (Ngn1) transcript levels; compared with cells maintained in the control media ( < 0.05). DPSCs seemed to potentially differentiate into neuron-like cells under the herein-mentioned treatment conditions.

Download full-text PDF

Source
http://dx.doi.org/10.1080/00207454.2019.1664518DOI Listing

Publication Analysis

Top Keywords

stem cells
12
dental pulp
8
pulp stem
8
neuron-like cells
8
egf bfgf
8
western blotting
8
cells
7
differentiation
5
differentiation dental
4
cells neuron-like
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!