Skin is the largest organ of the body and serves as the principle barrier to the environment. Composed of multiple cell types arranged in stratified layers with highly specialized appendages, it serves sensory and immune surveillance roles in addition to its primary mechanical function. Several complex in vitro models of skin (i.e. microphysiological systems (MPS) including but not limited to 3D tissues, organ-on-a-chip, organoids), have been developed and assays validated for regulatory purposes. As such, skin is arguably the most advanced organ with respect to model development and adoption across industries including chemical, cosmetic, and to a somewhat lesser extent, pharmaceutical. Early adoption of complex skin models and associated assays for assessment of irritation and corrosion spurred research into other areas such as sensitization, absorption, phototoxicity, and genotoxicity. Despite such considerable advancements, opportunities remain for immune capabilities, inclusion of appendages such as hair follicles, fluidics, and innervation, among others. Herein, we provide an overview of current complex skin model capabilities and limitations within the drug development scheme, and recommendations for future model development and assay qualification and/or validation with the intent to facilitate wider adoption of use within the pharmaceutical industry.

Download full-text PDF

Source
http://dx.doi.org/10.1039/c9lc00519fDOI Listing

Publication Analysis

Top Keywords

complex vitro
8
vitro models
8
model development
8
complex skin
8
skin
5
drug-induced skin
4
skin toxicity
4
toxicity gaps
4
gaps preclinical
4
preclinical testing
4

Similar Publications

Background: Oxidative stress is strongly linked to neurodegeneration through the activation of c-Abl kinase, which arrests α-synuclein proteolysis by interacting with parkin interacting substrate (PARIS) and aminoacyl tRNA synthetase complex-interacting multifunctional protein 2 (AIMP2). This activation, triggered by ataxia-telangiectasia mutated (ATM) kinase, leads to dopaminergic neuron loss and α-synuclein aggregation, a critical pathophysiological aspect of Parkinson's disease (PD). To halt PD progression, pharmacological inhibition of c-Abl kinase is essential.

View Article and Find Full Text PDF

Gastric Cancer Models Developed via GelMA 3D Bioprinting Accurately Mimic Cancer Hallmarks, Tumor Microenvironment Features, and Drug Responses.

Small

January 2025

Department of Surgical Oncology and General Surgery Key Laboratory of Precision Diagnosis and Treatment of Gastrointestinal Tumors, Ministry of Education The First Affiliated Hospital of China Medical University, Shenyang, 110001, China.

Current in vitro models for gastric cancer research, such as 2D cell cultures and organoid systems, often fail to replicate the complex extracellular matrix (ECM) found in vivo. For the first time, this study utilizes a gelatin methacryloyl (GelMA) hydrogel, a biomimetic ECM-like material, in 3D bioprinting to construct a physiologically relevant gastric cancer model. GelMA's tunable mechanical properties allow for the precise manipulation of cellular behavior within physiological ranges.

View Article and Find Full Text PDF

Reactive oxygen species (ROS)-mediated anticancer modalities, which disturb the redox balance of cancer cells through multi-pathway simulations, hold great promise for effective cancer management. Among these, cooperative physical and biochemical activation strategies have attracted increasing attention because of their spatiotemporal controllability, low toxicity, and high therapeutic efficacy. Herein, we demonstrate a nanogel complex as a multilevel ROS-producing system by integrating chloroperoxidase (CPO) into gold nanorod (AuNR)-based nanogels (ANGs) for cascade-amplifying photothermal-enzymatic synergistic tumor therapy.

View Article and Find Full Text PDF

Advanced tissue technologies of blood-brain barrier organoids as high throughput toxicity readouts in drug development.

Heliyon

January 2025

Roche Pharma Research and Early Development (pRED), Roche Innovation Center Basel, F. Hoffmann-La Roche Ltd, Grenzacherstrasse 124, 4070, Basel, Switzerland.

Recent advancements in engineering Complex models (CIVMs) such as Blood-brain barrier (BBB) organoids offer promising platforms for preclinical drug testing. However, their application in drug development, and especially for the regulatory purposes of toxicity assessment, requires robust and reproducible techniques. Here, we developed an adapted set of orthogonal image-based tissue methods including hematoxylin and eosin staining (HE), immunohistochemistry (IHC), multiplex immunofluorescence (mIF), and Matrix Assisted Laser Desorption/Ionization Mass Spectrometry Imaging (MALDI-MSI) to validate CIVMs for drug toxicity assessments.

View Article and Find Full Text PDF

This work reports the synthesis of a copper metal complex with the nonsteroidal anti-inflammatory drug (NSAID) ibuprofen, and 2,2'-dipyridylamine employing microwave-assisted synthesis (MWAS). To the best of authors knowledge, this is the first study reporting a NSAID-based complex achieved through MWAS. The coordination compound was characterised by elemental analysis, Fourier transform infrared spectroscopy, thermogravimetry, and ultraviolet-visible spectrophotometry.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!