Cultivating river sediments into efficient denitrifying sludge for treating municipal wastewater.

R Soc Open Sci

College of Architecture and Civil Engineering, Beijing University of Technology, Beijing 100124, People's Republic of China.

Published: September 2019

The river sediment contains a lot of pollutants in many cases, and needs to be treated appropriately for the restoration of water environments. In this study, a novel method was developed to convert river sediment into denitrifying sludge in a sequencing batch reactor (SBR). The river sediment was added into the reactor daily and the hydraulic retention time (HRT) of the reactor was gradually reduced from 8 to 4 h. The reactor achieved in the removal efficiency of 85% with the removal rate of 0.27 kg N m d. Response surface analysis represents that nitrate removal was affected mainly by HRT, followed by sediment addition. The denitrifying sludge achieved the highest activity with the following conditions: 50 mg l, HRT 6 h and adding 6 ml river sediments to 1 l wastewater of reactor per day. As a result, the cultivated denitrifying sludge could remove 80% for real municipal wastewater, and the high-throughput sequence analysis indicated that major denitrifying bacteria genera and the relative abundance in the cultivated denitrifying sludge were (33.82%) and (24.49%). The river sediments cultivating method in this report can not only obtain denitrifying sludge, but also make use of sediment resources, which has great application potential.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC6774965PMC
http://dx.doi.org/10.1098/rsos.190304DOI Listing

Publication Analysis

Top Keywords

denitrifying sludge
24
river sediments
12
river sediment
12
municipal wastewater
8
cultivated denitrifying
8
denitrifying
7
sludge
6
river
5
sediment
5
reactor
5

Similar Publications

Current published models for nitrous oxide (NO) emission in membrane aerated biofilm reactors (MABR) have several simplifications that are not representative of full-scale systems. This study developed an improved MABR NO model that captured commonly overlooked phenomena such as back diffusion of generated NO into MABR lumen gas and the recirculation of the NO laden lumen gas for tank mixing and biofilm thickness control. The improved model was validated with measured NO concentrations in the lumen gas phase and bulk mixed liquor in a full-scale hybrid MABR facility.

View Article and Find Full Text PDF

Organic carbon can influence nitrogen removal during the anaerobic ammonia oxidation (anammox) process. Propionate, a common organic compound in pretreated wastewater, its impacts on mixotrophic anammox bacteria and the underlying mechanisms have not been fully elucidated. This study investigated the core metabolism and shift in behavior patterns of mixotrophic Candidatus Brocadia sapporoensis (AMXB) under long-term propionate exposure.

View Article and Find Full Text PDF

Transformation fate of bisphenol A in aerobic denitrifying cultures and its coercive mechanism on the nitrogen transformation pathway.

Environ Res

January 2025

State Key Laboratory of Marine Pollution and Department of Chemistry, City University of Hong Kong, Tat Chee Avenue, Hong Kong, Kowloon, 999077, China; School of Energy and Environment, City University of Hong Kong, Tat Chee Avenue, Hong Kong, Kowloon, 999077, China.

Bisphenol A (BPA) is a commonly used endocrine-disrupting chemical found in high levels in wastewater worldwide. Aerobic denitrification is a promising alternative to conventional nitrogen removal processes. However, the effects of BPA on this novel nitrogen removal process have rarely been reported.

View Article and Find Full Text PDF

Effects of inoculum temperature and characteristics on cellulose and sewage sludge biodegradability: A comparative study of three inocula.

Chemosphere

January 2025

BioEngine Research team on green process Engineering and Biorefineries, Chemical Engineering Department, Université Laval, Pavillon Adrien-Pouliot 1065, av. de la Médecine Québec, Québec, Canada; CentrEau, Centre de Recherche sur l'eau, Université Laval, 1065 Avenue de la Médecine, Québec, QC, G1V 0A6, Canada. Electronic address:

The role of inoculum in initiating anaerobic digestion (AD), and accelerating the start-up of anaerobic digesters has been well-documented. However, the effect of aligning the origin temperature of the inoculum with the operational temperature of the new digester remains underexplored. This study investigates how the origin temperature and characteristics of the inoculum affect the kinetics and biodegradability of sewage sludge (SS) and microcrystalline cellulose (MCC) under mesophilic and thermophilic conditions.

View Article and Find Full Text PDF

Nitrogen contamination of water sources poses significant environmental and health risks. The sulfur-driven simultaneous nitrification and autotrophic denitrification (SNAD) process offers a cost-effective solution, as it operates in a single reactor, requires no organic carbon addition, and produces minimal sludge. However, this process remains underexplored, with microbial population dynamics, their interactions, and their implications for process efficiency not yet fully understood.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!