Predicting Indoor Concentrations of Black Carbon in Residential Environments.

Atmos Environ (1994)

Department of Environmental Health, University of Cincinnati,160 Panzeca Way, Kettering Laboratory, Cincinnati, Ohio USA 45267.

Published: March 2019

Black carbon (BC) is a descriptive term that refers to light-absorbing particulate matter (PM) produced by incomplete combustion and is often used as a surrogate for traffic-related air pollution. Exposure to BC has been linked to adverse health effects. Penetration of ambient BC is typically the primary source of indoor BC in the developed world. Other sources of indoor BC include biomass and kerosene stoves, lit candles, and charring food during cooking. Home characteristics can influence the levels of indoor BC. As people spend most of their time indoors, human exposure to BC can be associated to a large extent with indoor environments. At the same time, due to the cost of environmental monitoring, it is often not feasible to directly measure BC inside multiple individual homes in large-scale population-based studies. Thus, a predictive model for indoor BC is needed to support risk assessment in public health. In this study, home characteristics and occupant activities that potentially modify indoor levels of BC were documented in 23 homes, and indoor and outdoor BC concentrations were measured twice. The homes were located in the Cincinnati-Kentucky-Indiana tristate region and measurements occurred from September 2015 through August 2017. A linear mixed-effect model was developed to predict BC concentration in residential environments. The measured outdoor BC concentrations and the documented home characteristics were utilized as predictors of indoor BC concentrations. After the model was developed, a leave-one-out cross-validation algorithm was deployed to assess the predictive accuracy of the output. The following home characteristics and occupant activities significantly modified the concentration of indoor BC: outdoor BC, lit candles and electrostatic or high efficiency particulate air (HEPA) filters in heating, ventilation and air conditioning (HVAC) systems. Predicted indoor BC concentrations explained 78% of the variability in the measured indoor BC concentrations. The data show that outdoor BC combined with home characteristics can be used to predict indoor BC levels with reasonable accuracy.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC6785191PMC
http://dx.doi.org/10.1016/j.atmosenv.2018.12.053DOI Listing

Publication Analysis

Top Keywords

indoor concentrations
16
indoor
12
black carbon
8
residential environments
8
lit candles
8
characteristics occupant
8
occupant activities
8
indoor levels
8
indoor outdoor
8
outdoor concentrations
8

Similar Publications

This study aimed to increase the concentrations of vindoline (VDL) and catharanthine (CAT) in Catharanthus roseus plants cultivated in an indoor farming system using artificial lighting and plasma-activated water (PAW). After a 61-days pre-treatment period under fluorescent lamps, plants were exposed to four treatments: white light (W) from the same fluorescent lamps, red light (R) from LEDs, W with PAW, and R with PAW. These combinations were evaluated at two sampling times: 45 days (T1) and 70 days (T2) after the end of pre-treatment (DAP).

View Article and Find Full Text PDF

Jharkhand is a minerally prosperous state with geogenic and industrial origins of metals. This study assesses the seasonal variation of pseudo-total metal contents (Cr, Ni, Pb, Zn, Mn, Cu, Fe, Mg, Al) and related contamination and risks in indoor dust, street dust, and soils of four major cities of Jharkhand. Across cities and seasons, Zn, Cu, and Pb were the most common pollutants.

View Article and Find Full Text PDF

Hair cortisol of pigs in mixed organic farms: the influence of season, breeding system and sex.

Front Vet Sci

December 2024

Clinic for Ruminants and Pigs, Clinic for Reproduction and Large Animals, Veterinary Faculty, University of Ljubljana, Ljubljana, Slovenia.

Introduction: Measurement of hair cortisol concentration (HCC) is a useful tool for assessing the activity of the hypothalamic-pituitary-adrenal axis and thus evaluating the long-term adrenocortical response in different animal species and breeds. Robust indigenous pig breeds are highly adapted to the local environment and are preferred for organic farming, compared to the commercial breeds. We investigated whether seasonality, breeding system (indoor or outdoor) and sex influence HCC of pigs reared on organic farms.

View Article and Find Full Text PDF

The effects of filter coating approaches on photocatalytic abatement of formaldehyde in indoor environment using a TiO-based air purifier system.

Environ Res

December 2024

Department of Global Smart City & School of Civil, Architectural Engineering, and Landscape Architecture, Sungkyunkwan University, 2066 Seobu-ro, Suwon, 16419, Republic of Korea. Electronic address:

Titanium dioxide (TiO) is the most commonly used catalytic medium in the filter system of commercial photocatalytic air purifier (AP). The AP performance can be affected sensitively by the coating conditions of such medium on the filters and its physicochemical properties (e.g.

View Article and Find Full Text PDF

Epidemiologic studies of ambient fine particulate matter (PM) and ozone (O) often use outdoor concentrations from central-site monitors or air quality model estimates as exposure surrogates, which can result in exposure errors. We previously developed an exposure model called TracMyAir, which is an iPhone application that determines seven tiers of individual-level exposure metrics for ambient PM and O using outdoor concentrations, home building characteristics, weather, time-activities. The exposure metrics with increasing information needs and complexity include: outdoor concentration (C, Tier 1), building infiltration factor (F, Tier 2), indoor concentration (C, Tier 3), time spent in microenvironments (ME) (T, Tier 4), personal exposure factor (F, Tier 5), exposure (E, Tier 6), and inhaled dose (D, Tier 7).

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!