Zika virus (ZIKV) infection in pregnant women is a serious threat to the development and viability of the fetus. The primary mode of ZIKV transmission to humans is through mosquito bites, but sexual transmission has also been well documented in humans. However, little is known of the short- and long-term effects of ZIKV infection on the human male reproductive system. This study examines the effects of ZIKV infection on the male reproductive organs and semen and the immune response of the olive baboon (). Nine mature male baboons were infected with ZIKV (French Polynesian strain) subcutaneously. Six animals were euthanized at 41 days, while three animals were euthanized at 10 or 11 days postinfection (dpi). Viremia and clinical evidence of infection were present in all nine baboons. ZIKV RNA was present in the semen of five of nine baboons. ZIKV was present in the testes of two of three males euthanized at 10 or 11 dpi, but in none of six males at 41 dpi. Immunofluorescence of testes suggested the presence of ZIKV in sperm progenitor cells, macrophage penetration of seminiferous tubules, and increased tumor necrosis factor alpha (TNF-α), particularly in vascular walls. These data demonstrate that male olive baboons approximate the male human ZIKV response, including viremia, the adaptive immune response, and persistent ZIKV in semen. Although gross testicular pathology was not seen, the demonstrated breach of the testes-blood barrier and targeting of spermatogenic precursors suggest possible long-term implications in ZIKV-infected primates. Zika virus (ZIKV) is an emerging flavivirus spread through mosquitoes and sexual contact. ZIKV infection during pregnancy can lead to severe fetal outcomes, including miscarriage, fetal death, preterm birth, intrauterine growth restriction, and fetal microcephaly, collectively known as congenital Zika syndrome. Therefore, it is important to understand how this virus spreads, as well as the resulting pathogenesis in translational animal models that faithfully mimic ZIKV infection in humans. Such models will contribute to the future development of efficient therapeutics and prevention mechanisms. Through our previous work in olive baboons, we developed a nonhuman primate model that is permissive to ZIKV infection and transfers the virus vertically from mother to fetus, modeling human observations. The present study contributes to understanding of ZIKV infection in male baboon reproductive tissues and begins to elucidate how this may affect fertility, reproductive capacity, and sexual transmission of the virus.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC6912120 | PMC |
http://dx.doi.org/10.1128/JVI.01434-19 | DOI Listing |
Nat Commun
December 2024
KU Leuven Department of Microbiology, Immunology and Transplantation, Virology, Antiviral Drug & Vaccine Research Group, Rega Institute for Medical Research, Leuven, Belgium.
The 2015-2016 Zika virus (ZIKV) outbreak in the Americas revealed the ability of ZIKV from the Asian lineage to cause birth defects, generically called congenital Zika syndrome (CZS). Notwithstanding the long circulation history of Asian ZIKV, no ZIKV-associated CZS cases were reported prior to the outbreaks in French Polynesia (2013) and Brazil (2015). Whether the sudden emergence of CZS resulted from an evolutionary event of Asian ZIKV has remained unclear.
View Article and Find Full Text PDFNat Commun
December 2024
College of Life Sciences, Inner Mongolia Agriculture University, Hohhot, Inner Mongolia, P. R. China.
Zika virus (ZIKV) infection can result in a birth defect of the brain called microcephaly and other severe fetal brain defects. ZIKV enters the susceptible host cells by endocytosis, which is mediated by the interaction of the envelope (E) glycoprotein with cellular surface receptor molecules. However, the cellular factors that used by the ZIKV to gain access to host cells remains elusive.
View Article and Find Full Text PDFJ Med Virol
January 2025
Infection and Immunity Research Strength, Jeffrey Cheah School of Medicine and Health Sciences, Monash University Malaysia, Selangor, Malaysia.
The two most clinically important members of the flavivirus genus, Zika virus (ZIKV) and dengue virus (DENV) pose a significant public health challenge. They cause a range of diseases in humans, from hemorrhagic to neurological manifestations, leading to economic and social burden worldwide. Nevertheless, there are no approved antiviral drugs to treat these infections.
View Article and Find Full Text PDFJ Mol Graph Model
December 2024
Post Graduate Department of Chemistry, Mehr Chand Mahajan DAV College for Women, Chandigarh, 160036, India.
A large population in the world lives in tropical and subtropical regions, showing a high risk of Zika viral infection which leads to a situation of global health emergency and demands extensive research to create effective antiviral medicines. Herein, we introduce the design of a new derivatized trans-stilbene molecule to investigate the inhibition of Zika virus entry into the host cell by molecular docking approach. The synthesized compound has been characterized by different analytical techniques such as FTIR, H NMR,C NMR and UV-visible spectroscopy as well as Mass spectrometry (MS).
View Article and Find Full Text PDFLancet Microbe
December 2024
Department of Microbiology and Immunology, University of North Carolina School of Medicine, Chapel Hill, NC, USA. Electronic address:
Background: Serology for dengue viruses (DENV) and Zika virus (ZIKV) has been hindered by antibody cross-reactivity, which limits the utility of these tests for surveillance and assessment of sero-status. Our aim was to develop a multiplexed IgG-based assay with increased accuracy to assess the history of previous DENV and ZIKV infections.
Methods: We developed and assessed the analytical performance of a sample-sparing, multiplexed, microsphere-based serological assay using domain III of the envelope protein (EDIII) of DENV serotypes 1-4 and ZIKV, the most variable region between each virus.
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!