Cardiac fibrosis is a major cause of cardiac dysfunction in hypertrophic hearts. Differentiated embryonic chondrocyte gene 1 (Dec1), a basic helix-loop-helix transcription factor, has circadian expression in the heart; however, its role in cardiac diseases remains unknown. Therefore, using Dec1 knock-out (Dec1KO) and wild-type (WT) mice, we evaluated cardiac function and morphology at one and four weeks after transverse aortic constriction (TAC) or sham surgery. We found that Dec1KO mice retained cardiac function until four weeks after TAC. Dec1KO mice also revealed more severely hypertrophic hearts than WT mice at four weeks after TAC, whereas no significant change was observed at one week. An increase in Dec1 expression was found in myocardial and stromal cells of TAC-treated WT mice. In addition, Dec1 circadian expression was disrupted in the heart of TAC-treated WT mice. Cardiac perivascular fibrosis was suppressed in TAC-treated Dec1KO mice, with positive immunostaining of S100 calcium binding protein A4 (S100A4), alpha smooth muscle actin (αSMA), transforming growth factor beta 1 (TGFβ1), phosphorylation of Smad family member 3 (pSmad3), tumor necrosis factor alpha (TNFα), and cyclin-interacting protein 1 (p21). Furthermore, Dec1 expression was increased in myocardial hypertrophy and myocardial infarction of autopsy cases. Taken together, our results indicate that Dec1 deficiency suppresses cardiac fibrosis, preserving cardiac function in hypertrophic hearts. We suggest that Dec1 could be a new therapeutic target in cardiac fibrosis.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC6802004PMC
http://dx.doi.org/10.3390/ijms20194967DOI Listing

Publication Analysis

Top Keywords

cardiac fibrosis
12
hypertrophic hearts
12
cardiac function
12
dec1ko mice
12
cardiac
10
deficiency suppresses
8
suppresses cardiac
8
cardiac perivascular
8
perivascular fibrosis
8
transverse aortic
8

Similar Publications

Background: Cardiovascular disease remains the leading cause of mortality worldwide. Cardiac fibrosis impacts the underlying pathophysiology of many cardiovascular diseases by altering structural integrity and impairing electrical conduction. Identifying cardiac fibrosis is essential for the prognosis and management of cardiovascular disease; however, current diagnostic methods face challenges due to invasiveness, cost, and inaccessibility.

View Article and Find Full Text PDF

Cardiac pathology associated with hypertension and chronic kidney disease in aged cats.

J Comp Pathol

January 2025

Department of Comparative Biomedical Sciences, Royal Veterinary College, University of London, Royal College Street, London NW1 0TU, UK. Electronic address:

Hypertension is a common condition in older cats, often secondary to chronic kidney disease (CKD). Although the heart is one of the organs damaged by hypertension, the pathology of the feline hypertensive (HT) heart has been poorly studied. The aim of this retrospective study was to describe the gross and microscopic pathology of hearts obtained from cats at post-mortem examination and to compare cats diagnosed with hypertension with cats of similar age and kidney function for which antihypertensive treatment was not deemed clinically necessary.

View Article and Find Full Text PDF

TRADD-mediated pyroptosis contributes to diabetic cardiomyopathy.

Acta Pharmacol Sin

January 2025

Department of Pharmacology, School of Pharmacy, Nantong University, Nantong, 226001, China.

Regulated cell death like pyroptosis is one vital cause of diabetic cardiomyopathy (DCM), which eventually leads to heart failure. Tumor necrosis factor (TNF) receptor-associated death domain protein (TRADD) is an adapter protein with multiple functions that participates in the pathophysiological progress of different cardiovascular disorders via regulating regulated cell death. Studies have shown that TRADD combines with receptor-interacting protein kinase 3 (RIPK3) and facilitates its activation, thereby mediating TNF-induced necroptosis.

View Article and Find Full Text PDF

Dihydrotanshinone I (DHT) is an active ingredient derived from Salvia miltiorrhiza. Previous studies have demonstrated that DHT can improve cardiac function in rats with myocardial ischemia-reperfusion injury (IR). However, the mechanism by which DHT improves myocardial injury in rats still requires further research.

View Article and Find Full Text PDF

Prognostic Implications of Cardiac Geometry in Cirrhosis: Findings From a Large Cohort.

Liver Int

February 2025

General Practice Ward/International Medical Center Ward, General Practice Medical Center, West China Hospital, Sichuan University, Chengdu, China.

Background And Aims: Cirrhosis is characterised by hyperdynamic circulation, which contributes to cirrhotic cardiomyopathy (CCM). However, the expert consensus on CCM did not initially include cardiac structure because of scant evidence. Therefore, this study investigated the associations of cardiac chamber geometry with mortality and CCM.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!