Genetic variants in the hepatic uptake transporter OCT1, observed in 9% of Europeans and white Americans, are known to affect pharmacokinetics and efficacy of tramadol, morphine, and codeine. Here, we report further opioids to be substrates and inhibitors of OCT1. Methylnaltrexone, hydromorphone, oxymorphone, and meptazinol were identified as OCT1 substrates. Methylnaltrexone is the strongest OCT1 substrate currently reported. It showed 86-fold higher accumulation in OCT1-overexpressing cells compared to control cells. We observed substantial differences in the inhibitory potency among structurally highly similar morphinan opioids (IC ranged from 6.4 μM for dextrorphan to 2 mM for oxycodone). The ether linkage of C4-C5 in the morphinan ring leads to a strong reduction of inhibitory potency. In conclusion, although polyspecific, OCT1 possesses a strong selectivity for its ligands. In contrast to methylnaltrexone and hydromorphone, oxycodone and hydrocodone do not interact with OCT1 and may be safer for use in individuals with genetic OCT1 deficiency.

Download full-text PDF

Source
http://dx.doi.org/10.1021/acs.jmedchem.9b01301DOI Listing

Publication Analysis

Top Keywords

opioids substrates
8
substrates inhibitors
8
oct1
8
transporter oct1
8
methylnaltrexone hydromorphone
8
inhibitory potency
8
inhibitors genetically
4
genetically highly
4
highly variable
4
variable organic
4

Similar Publications

Do P-glycoprotein-mediated drug-drug interactions at the blood-brain barrier impact morphine brain distribution?

J Pharmacokinet Pharmacodyn

January 2025

Division of Systems Pharmacology and Pharmacy, Leiden Academic Center for Drug Research, Leiden University, Einsteinweg 55, Leiden, 2333 CC, The Netherlands.

P-glycoprotein (P-gp) is a key efflux transporter and may be involved in drug-drug interactions (DDIs) at the blood-brain barrier (BBB), which could lead to changes in central nervous system (CNS) drug exposure. Morphine is a P-gp substrate and therefore a potential victim drug for P-gp mediated DDIs. It is however unclear if P-gp inhibitors can induce clinically relevant changes in morphine CNS exposure.

View Article and Find Full Text PDF

Morphine belongs to the class of opioids and is known for its potential to cause dependence and addiction, particularly with prolonged use. Due to the associated risks, caution must be taken when prescribing and limiting its clinical use. Overexpression of N-methyl-D-aspartate (NMDA) receptors, nitric oxide and cGMP pathway has been implicated in exacerbate the development of morphine dependence and withdrawal.

View Article and Find Full Text PDF

Transmembrane E3 ligase RNF128 regulates N-glycosylation by promoting ribophorin I ubiquitination and degradation.

BMB Rep

December 2024

Department of Medical Life Sciences, College of Medicine, The Catholic University of Korea, Seoul 06591, Korea; Department of Biomedicine & Health Sciences, College of Medicine, The Catholic University of Korea, Seoul 06591, Korea.

Ring finger protein 128 (RNF128) is a transmembrane E3 ubiquitin ligase mainly localized in the endoplasmic reticulum that is involved in various processes, including T cell anergy and tumor progression. However, the biological function of RNF128 in N-glycosylation remains unexplored. To investigate the functional role of RNF128, we used the proximity-directed biotin labeling method, and identified ribophorin I (RPN1) as a novel RNF128 substrate, demonstrating that RNF128 ubiquitinated RPN1 and promoted its degradation.

View Article and Find Full Text PDF

A flexible plasmonic substrate for sensitive surface-enhanced Raman scattering-based detection of fentanyl.

Chem Commun (Camb)

November 2024

Department of Biomedical Engineering and Environmental Sciences, National Tsing Hua University, Hsinchu 300044, Taiwan.

In this work, we demonstrate a straightforward and versatile approach for fabricating flexible SERS substrates for highly sensitive fentanyl detection. Our design strategy integrates the synthesis of a yolk-shell structured plasmonic nanomaterial with a flexible cellulose substrate. The resulting SERS platform demonstrates excellent sensing capabilities, achieving a fentanyl detection limit as low as 4.

View Article and Find Full Text PDF

Background/objectives: Chronic pain is an opioid use disorder (OUD) treatment barrier and associated with poor outcomes in OUD treatment including relapse. Fibromyalgia is a chronic pain condition related to central nervous system substrates that overlap with the brain disease model of OUD. We know of no studies that have looked at non-treatment seeking individuals, to see if fibromyalgia might represent a barrier to OUD treatment.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!