Islet cell transplantation can lead to insulin independence, reduced hypoglycemia, and amelioration of diabetes complications in patients with type 1 diabetes. The systemic delivery of anti-inflammatory agents, while considered crucial to limit the early loss of islets associated with intrahepatic infusion, increases the burden of immunosuppression. In an effort to decrease the pharmaceutical load to the patient, we modified the pancreatic islet surface with long-chain poly(ethylene glycol) (PEG) to mitigate detrimental host-implant interactions. The effect of PEGylation on islet engraftment and long-term survival was examined in a robust nonhuman primate model via three paired transplants of dosages 4300, 8300, and 10 000 islet equivalents per kg body weight. A reduced immunosuppressive regimen of anti-thymocyte globulin induction plus tacrolimus in the first posttransplant month followed by maintenance with sirolimus monotherapy was employed. To limit transplant variability, two of the three pairs were closely MHC-matched recipients and received MHC-disparate PEGylated or untreated islets isolated from the same donors. Recipients of PEGylated islets exhibited significantly improved early c-peptide levels, reduced exogenous insulin requirements, and superior glycemic control, as compared to recipients of untreated islets. These results indicate that this simple islet modification procedure may improve islet engraftment and survival in the setting of reduced immunosuppression.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC7042048PMC
http://dx.doi.org/10.1111/ajt.15643DOI Listing

Publication Analysis

Top Keywords

pegylated islets
8
nonhuman primate
8
primate model
8
islet engraftment
8
untreated islets
8
islets
5
islet
5
transplantation pegylated
4
islets enhances
4
enhances therapeutic
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!