Severity: Warning
Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 176
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML
File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
The embryonic stem cell line derivation from nonpermissive mouse strains is a challenging and highly inefficient process. The cellular reprogramming strategy provides an alternative route for generating pluripotent stem cell (PSC) lines from such strains. In this study, we successfully derived an enhanced green fluorescent protein (EGFP)-transgenic "N9" induced pluripotent stem cell (iPS cell, iPSC) line from the FVB/N strain-derived mouse embryonic fibroblasts (MEFs). The exposure of MEFs to human , , , and (OSKM) transgenes via lentiviral transduction resulted in complete reprogramming. The N9 iPS cell line demonstrated all the criteria of a typical mouse PSC line, including normal colony morphology and karyotype (40,XY), high replication and propagation efficiencies, expression of the pluripotency-associated genes, spontaneous differentiation to three germ lineage-derived cell types, and robust potential of chimeric blastocyst formation. Taken together, using human OSKM genes for transduction, we report, for the first time, the successful derivation of an EGFP-expressing iPS cell line from a genetically nonpermissive transgenic FVB/N mouse. This cell line could provide opportunities for designing protocols for efficient derivation of PSC lines from other nonpermissive strains and developing mouse models of human diseases.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1089/cell.2019.0019 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!