Fibronectin (FN) is a widely distributed glycoprotein which is present in different bodily fluids, on the surface of cells and in the extracellular matrix (ECM). It plays roles in various processes, including cell adhesion, migration, growth, proliferation, and tissue repair. Fibronectin exists in 2 forms: a soluble, inactive molecule, called plasma FN (pFN), which is synthesized by hepatocytes in the liver, and an insoluble cellular form (cFN), which is produced locally by different types of cells and is a key component of the ECM. Fibrinogen fibrils ensure structural support for cell adhesion and promote cell migration, proliferation and apoptosis. Additionally, FN controls the availability of growth factors. The plasma form of FN is a crucial component of the fibrin clot in the early wound-healing response, while the cellular form of FN supports efficient platelet adhesion, activation, aggregation, and procoagulant activity. Alternative splicing of the FN gene results in the generation of protein variants which contain the additional isoforms - extra domain A of FN (EDA) and extra domain A of FN (EDB); these are associated with, e.g., tissue remodeling, fibroblast differentiation, inflammation, and tumor progression. Fibronectin also serves as a target for a large number of bacterial proteins, and as part of a 3-component bridge (FN, integrin and FN-binding proteins - FnBPs) it contributes to bacterial colonization of endothelial and epithelial cells. Fibronectin has been identified in sepsis in humans as a negative acute-phase protein, and a low level of FN seems to be a marker of a poor prognosis for a patient. Here, the role of FN in inflammatory processes and sepsis is presented.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.17219/acem/104531 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!