Accelerating oxygen evolution electrocatalysis of two-dimensional NiFe layered double hydroxide nanosheets via space-confined amorphization.

Nanoscale

College of Materials Science and Engineering, Hunan University, Changsha, Hunan 410082, P. R. China. and State Key Lab of Silicon Materials, School of Materials Science and Engineering, Zhejiang University, Hangzhou 310027, P. R. China.

Published: October 2019

NiFe layered double hydroxides (LDHs) have received widespread attention due to their unique structures and inherent electrocatalytic activity towards the oxygen evolution reaction (OER). Extensive studies have been reported to further improve the electrocatalytic activity of NiFe-LDHs via various strategies. However, controlling the degree of amorphization and stabilizing the amorphous zone during the electrocatalytic process are still challenging. Here, we report a facile method to synthesize a space-confined amorphous NiFe-LDH (SCA-NiFe-LDH) by selectively etching the surfaces of electrocatalysts. Due to the successful anchoring of amorphous zones onto the basal planes of the two-dimensional NiFe-LDH, the optimized SCA-NiFe-LDH exhibits high electrocatalytic activity with a low overpotential of 190 mV at 10 mA cm, a Tafel slope of 31 mV dec and excellent long-term stability. The substantially enhanced OER performance is attributed to the increased amount of active sites and the modified electronic structure of NiFe-LDH after amorphization.

Download full-text PDF

Source
http://dx.doi.org/10.1039/c9nr07465aDOI Listing

Publication Analysis

Top Keywords

electrocatalytic activity
12
oxygen evolution
8
nife layered
8
layered double
8
accelerating oxygen
4
evolution electrocatalysis
4
electrocatalysis two-dimensional
4
two-dimensional nife
4
double hydroxide
4
hydroxide nanosheets
4

Similar Publications

Elevated dopamine (DA) levels in urine denote neuroblastoma, a pediatric cancer. Saccharide-derived carbon dots (CDs) were applied to assay DA detection in simulated urine (SU) while delineating the effects of graphene defect density on electrocatalytic activity. CDs were hydrothermally synthesized to vary graphene defect densities using sucrose, raffinose, and palatinose, depositing them onto glassy carbon electrodes (GCEs).

View Article and Find Full Text PDF

Creating and maintaining a favorable microenvironment for electrocatalytic CO reduction reaction (eCORR) is challenging due to the vigorous interactions with both gas and electrolyte solution during the electrocatalysis. Herein, to boost the performance of eCORR, a unique synthetic method that deploys the in situ reduction of precoated precursors is developed to produce activated Ag nanoparticles (NPs) within the gas diffusion layer (GDL), where the thus-obtained Ag NPs-Skeleton can block direct contact between the active Ag sites and electrolyte. Specifically, compared to the conventional surface loading mode in the acidic media, our freestanding and binder free electrode can achieve obvious higher CO selectivity of 94%, CO production rate of 23.

View Article and Find Full Text PDF

Developing nonprecious metal-based electrocatalysts with exceptional activity and durability for water electrolysis remains a significant challenge. Herein, we report a highly efficient bifunctional electrocatalyst composed of sulfur-doped vanadium metal-organic frameworks (S@V-MOF) integrated with multiwalled carbon nanotubes (MWCNTs) to promote the synergistic effect between S@V-MOF and MWCNTs and modulate the electronic structure of the catalyst, which eventually enhanced its electrocatalytic performance. The S@V-MOF/MWCNT catalyst loaded at the Ni foam electrode exhibits remarkable activity for both the hydrogen evolution reaction (HER) in acidic media and oxygen evolution reaction (OER) in alkaline media, requiring overpotentials of 48 and 227 mV, respectively, to reach a current density of 10 mA cm.

View Article and Find Full Text PDF

Tuning the Acid Hardness Nature of Cu Catalyst for Selective Nitrate-to-Ammonia Electroreduction.

Angew Chem Int Ed Engl

January 2025

Institute of Chemistry Chinese Academy of Sciences, Institute of chemistry, Beiyijie number 2, Zhongguancun, 100190, Beijing, CHINA.

Electrocatalytic nitrate reduction reaction (NO3RR) in alkaline electrolyte presents a sustainable pathway for energy storage and green ammonia (NH3) synthesis. However, it remains challenging to obtain high activity and selectivity due to the limited protonation and/or desorption processes of key intermediates. Herein, we propose a strategy to regulate the acid hardness nature of Cu catalyst by introducing appropriate modifier.

View Article and Find Full Text PDF

The disinfection of drinking water is essential for eliminating pathogens and preventing waterborne diseases. However, this process generates various disinfection byproducts (DBPs), which toxicological research indicates can have detrimental effects on living organisms. Moreover, the safety of these DBPs has not been sufficiently assessed, underscoring the need for a comprehensive evaluation of their toxic effects and associated health risks.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!