Argyrodite Solid Electrolyte with a Stable Interface and Superior Dendrite Suppression Capability Realized by ZnO Co-Doping.

ACS Appl Mater Interfaces

Clean Nano Energy Center, State Key Laboratory of Metastable Materials Science and Technology , Yanshan University, Qinhuangdao , Hebei 066004 , China.

Published: October 2019

Despite the high ionic conductivity and good machinability, the application of sulfide solid electrolytes (SEs) is severely limited by the poor compatibility of oxide cathodes with Li metals. Herein, a ZnO co-doping strategy is proposed to enhance the chemical and electrochemical performance of sulfide SEs. Given the synergistic effect by incorporation of ZnO, the argyrodite electrolyte achieves superior interfacial stability and Li dendrite suppression capability. By in-depth ex situ analyses, the enhancement is ascribed to LiZn and LiOBr formed in the argyrodite/Li interface and a reduced electronic conductivity arising from the ZnO doping. In addition, O doping improves the air stability for argyrodite without degrading the ionic conductivity because of the compensation by Zn doping. Hence, all-solid-state batteries with ZnO-doped electrolytes achieve higher initial Coulombic efficiency and a larger specific capacity than those of the ZnO-free electrolyte. ZnO-doped sulfide SEs are promising to develop all-solid-state Li-metal batteries.

Download full-text PDF

Source
http://dx.doi.org/10.1021/acsami.9b13313DOI Listing

Publication Analysis

Top Keywords

dendrite suppression
8
suppression capability
8
zno co-doping
8
ionic conductivity
8
sulfide ses
8
argyrodite solid
4
solid electrolyte
4
electrolyte stable
4
stable interface
4
interface superior
4

Similar Publications

Background: Genetic studies indicate a causal role for microglia, the innate immune cells of the central nervous system (CNS), in Alzheimer's disease (AD). Despite the progress made in identifying genetic risk factors, such as CD33, and underlying molecular changes, there are currently limited treatment options for AD. Based on the immune-inhibitory function of CD33, we hypothesize that inhibition of CD33 activation may reverse microglial suppression and restore their ability to resolve inflammatory processes and mitigate pathogenic amyloid plaques, which may be neuroprotective.

View Article and Find Full Text PDF

LiZrF-based electrolytes for durable lithium metal batteries.

Nature

January 2025

School of Environment and Energy, State Key Laboratory of Luminescent Materials and Devices, Guangdong Provincial Key Laboratory of Atmospheric Environment and Pollution Control, South China University of Technology, Guangzhou, China.

Lithium (Li) metal batteries (LMBs) are promising for high-energy-density rechargeable batteries. However, Li dendrites formed by the reaction between highly active Li and non-aqueous electrolytes lead to safety concerns and rapid capacity decay. Developing a reliable solid-electrolyte interphase is critical for realizing high-rate and long-life LMBs, but remains technically challenging.

View Article and Find Full Text PDF

Nanomedicine-unlocked radiofrequency dynamic therapy dampens incomplete radiofrequency ablation-arised immunosuppression to suppress cancer relapse.

Biomaterials

January 2025

Department of Laboratory Medicine and Department of Ultrasound, Sichuan Academy of Medical Sciences, Sichuan Provincial People's Hospital, School of Medicine, University of Electronic Science and Technology of China, No. 32, West Second Section, First Ring Road, Chengdu, 610072, Sichuan, China. Electronic address:

Incomplete radiofrequency ablation (iRFA) not only leaves residual tumor, but also render the residual tumor highly self-adaptable and immunosuppressive, consequently expediting residual tumor progression including relapse. To address it, radiofrequency dynamic therapy (RFDT) with identical trigger (namely radiofrequency) has been established and enabled by polyethylene glycol (PEG)-modified Fe-based single atom nanozyme (P@Fe SAZ). P@Fe SAZ can respond to radiofrequency field to produce reactive oxygen species (ROS), attaining the nanomedicine-unlocked low-temperature RFDT.

View Article and Find Full Text PDF

The multiple resonance thermally activated delayed fluorescence (MR-TADF) device has drawn great attention due to their outstanding efficiency and color purity. However, the efficiency of solution-processed MR-TADF devices is still far behind their vacuum-deposited counterparts, due to the uncontrollable horizontal emitting dipole orientation for emitters during solution process, resulting in low light out-coupling efficiency. Here, we proposed a new strategy namely electrostatic interaction between a dendritic host with high positive electrostatic potential (ESP) and dendritic emitter with multiple negative ESP sites, which could induce high horizontal dipole ratio (ΘII) up to 83.

View Article and Find Full Text PDF

Optimized BCMA/CS1 bispecific TRuC-T cells secreting IL-7 and CCL21 robustly control multiple myeloma.

Front Immunol

January 2025

Key Laboratory of Laboratory Medicine, Ministry of Education, School of Laboratory Medicine and Life Science, Wenzhou Medical University, Wenzhou, China.

Introduction: Challenges remain in reducing antigen escape and tumor recurrence while CAR-T cell therapy has substantially improved outcomes in the treatment of multiple myeloma. T cell receptor fusion construct (TRuC)-T cells, which utilize intact T cell receptor (TCR)-CD3 complex to eliminate tumor cells in a non-major histocompatibility complex (MHC)-restricted manner, represent a promising strategy. Moreover, interleukin-7 (IL-7) is known to enhance the proliferation and survival of T cells.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!