In this study, we synthesized four acceptor-donor-acceptor type hole-transporting materials (HTMs) of for an HTMs/interfacial layer with carbazole as the core moiety and ester/amide as the acceptor unit. These HTMs contain 4-hexyloxyphenyl substituents on the carbazole N atom, with extended π-conjugation achieved through phenylene and thiophene units at the 3,6-positions of the carbazole. When using amide-based HTMs as a dopant-free HTM in a p-i-n perovskite solar cell (PSC), we achieved a power conversion efficiency (PCE) of 13.59% under AM 1.5G conditions (100 mW cm); this PCE was comparable with that obtained when using PEDOT:PSS as the HTM (12.33%). Amide-based and HTMs showed a larger perovskite grain than and because of the passivation of traps/defects at the grain boundaries and stronger interaction with the perovskite layer. In further investigation, we demonstrated highly efficient and stable PSCs when using the dopant-free p-i-n device structure indium tin oxide/NiO/interfacial layer (-HTMs)/perovskite/PCBM/BCP/Ag. The interfacial layer improved the PCEs and large grain size (micrometer scale) of the perovskite layer because of defect passivation and interface modification; the amide group exhibited a Lewis base adduct property coordinated to Ni and Pb ions in NiO and perovskite, bifacial defect passivation and reduced the grain boundaries to improve the crystallinity of the perovskite. The amide-based exhibited the stronger interaction with the perovskite layer than that of ester-based , which is related to the observations in X-ray absorption near edge structure (XANES). The best performance of the NiO/ device was characterized by a short-circuit current density () of 21.76 mA cm, an open-circuit voltage () of 1.102 V, and a fill factor of 79.1%, corresponding to an overall PCE of 18.96%. The stability test of the PCE of the NiO/ PSC device PCE showed a decay of only 5.01% after 168 h; it retained 92.01% of its original PCE after 1000 h in Ar atmosphere. Time-resolved photoluminescence spectra of the perovskite films suggested that the hole extraction capabilities of the NiO/-HTMs were better than that of the bare NiO. The superior film morphologies of the NiO/-HTMs were responsible for the performances of their devices being comparable with those of bare NiO-based PSCs. The photophysical properties of the HTMs were analyzed through time-dependent density functional theory with the B3LYP functional.

Download full-text PDF

Source
http://dx.doi.org/10.1021/acsami.9b13952DOI Listing

Publication Analysis

Top Keywords

defect passivation
12
perovskite layer
12
perovskite
10
interfacial layer
8
perovskite grain
8
p-i-n perovskite
8
perovskite solar
8
amide-based htms
8
grain boundaries
8
stronger interaction
8

Similar Publications

It is necessary to overcome the relatively low conductivity of ionic liquids (ILs) caused by steric hindrance effects to improve their ability to passivate defects and inhibit ion migration to boost the photovoltaic performance of perovskite solar cells (PSCs). Herein, we designed and prepared a kind of low-concentration 1-butyl-3-methylimidazolium tetrafluoroborate (BMIMBF) diluted with propylene carbonate (PC) via an ultrasonic technique (PC/IL). The decrease in the decomposition temperature related to the IL part and the increase in the sublimation temperature related to the PC part facilitated the use of PC/IL to effectively delay the crystallization process and passivate the defects in multiple ways to obtain high-quality perovskite films.

View Article and Find Full Text PDF

Enhancing Photovoltaically Preferred Orientation in Wide-Bandgap Perovskite for Efficient All-Perovskite Tandem Solar Cells.

Adv Mater

January 2025

School of Optoelectronic Science and Engineering & Collaborative Innovation Center of Suzhou Nano Science and Technology, Key Lab of Advanced Optical Manufacturing Technologies of Jiangsu Province & Key Lab of Modern Optical Technologies of Education Ministry of China, Soochow University, Suzhou, 215006, China.

Wide-bandgap perovskite solar cells (WBG PSCs) have promising applications in tandem devices yet suffer from low open-circuit voltages (Vs) and less stability. To address these issues, the study introduces multifunctional nicotinamide derivatives into WBG PSCs, leveraging the regulation on photovoltaically preferential orientation and optoelectronic properties via diverse functional groups, e.g.

View Article and Find Full Text PDF

This study presents a comprehensive evaluation of Copper Indium Gallium Selenide (CIGS) solar technology, benchmarked against crystalline silicon (c-Si) PERC PV technology. Utilizing a newly developed energy yield model, we analyzed the performance of CIGS in various environmental scenarios, emphasizing its behavior in low-light conditions and under different temperature regimes. The model demonstrated high accuracy with improved error metrics of normalized mean bias error (nMBE) ~ 1% and normalized root mean square error (nRMSE) of  ~ 8%-20% in simulating rack mounted setup and integrated PV systems.

View Article and Find Full Text PDF
Article Synopsis
  • Earth-abundant kesterite Cu2ZnSn(S,Se)4 (CZTSSe) solar cells face efficiency challenges due to deep-level defects, which result in short carrier diffusion lengths, band tailing, and significant open-circuit voltage deficits.
  • A proposed solution involves a post-fabrication treatment where the CZTSSe film is dip-coated in dimethylformamide (DMF), a polar solvent that helps neutralize defects and improve film quality, leading to larger grain sizes.
  • As a result of this treatment, carrier diffusion length increased from 93 nm to 142 nm, reducing the VOC deficit by up to 289 mV and boosting the solar cell efficiency to 11.4%, showcasing the promise of DMF
View Article and Find Full Text PDF

Enhancing the Performance of Hole-Conductor-Free Printable Mesoscopic Perovskite Solar Cells through Polyaniline-Mediated Iodine Recycling and Defect Passivation.

Small

January 2025

Michael Grätzel Center for Mesoscopic Solar Cells, Wuhan National Laboratory for Optoelectronics, Key Laboratory of Materials Chemistry for Energy Conversion and Storage of Ministry of Education, Huazhong University of Science and Technology, Wuhan, Hubei, 430074, P. R. China.

Printable mesoscopic perovskite solar cells (p-MPSCs) provide an opportunity for low-cost manufacturing of photovoltaics. However, the performance of p-MPSCs is severely compromised by iodine defects. This study presents a strategy by incorporating polyaniline (PANI) to achieve both iodine recycling and iodine defect passivation to significantly improve the performance of p-MPSCs.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!