Two isomers of heteroleptic bis(bidentate) ruthenium(II) complexes with dimethyl sulfoxide (dmso) and chloride ligands, trans(Cl,N )- and trans(Cl,N )-[Ru(bpy)Cl(dmso-S)(Hdpa)] (bpy: 2,2'-bipyridine; Hdpa: di-2-pyridylamine), are synthesized. This is the first report on the selective synthesis of a pair of isomers of cis-[Ru(L)(L')XY] (L≠L': bidentate ligands; X≠Y: monodentate ligands). The structures of the ruthenium(II) complexes are clarified by means of X-ray crystallography, and the signals in the H NMR spectra are assigned based on H- H COSY spectra. The colors of the two isomers are clearly different in both the solid state and solution: the trans(Cl,N ) isomer has a deep red color, whereas the trans(Cl,N ) isomer is yellow. Although both complexes have intense absorption bands at λ≈440-450 nm, only the trans(Cl,N ) isomer has a shoulder band at λ≈550 nm. DFT calculations indicate that the LUMOs of both isomers are the π* orbitals in the bpy ligand, and that the LUMO level of the trans(Cl,N ) isomer is lower than that of the trans(Cl,N ) isomer due to the trans effect of the Cl ligand; thus resulting in the appearance of the shoulder band. The HOMO levels are almost the same in both isomers. The energy levels are experimentally supported by cyclic voltammograms, in which these isomers have different reduction potentials and similar oxidation potentials.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1002/chem.201903706 | DOI Listing |
Biomed Chromatogr
January 2025
Beijing Harmony Health Medical Diagnostics Co., Ltd., Beijing, China.
In the context of personalized and precision medicine, simultaneous monitoring of different forms of vitamins A and E and their metabolites could help us better understand the status of vitamins A and E in the body. The aim of this study was to establish a method for simultaneous determination of 13 kinds of vitamins A and E and their metabolites in human serum. Serum samples were directly detected by LC-MS/MS after deproteinization.
View Article and Find Full Text PDFChemistry
December 2024
University of Pardubice: Univerzita Pardubice, Institute of Organic Chemistry and Technology, CZECHIA.
Differently substituted pyrrole-azo‑benzene molecular photoswitches were prepared in a straightforward synthetic way. Their fundamental properties were investigated by XRD analysis, differential scanning calorimetry, thermogravimetric analysis, cyclic voltammetry, UV‑Vis absorption spectroscopy, Hyper-Rayleigh Scattering, and NMR spectroscopy; the experimental results were further corroborated by DFT calculations. Thermal robustness, the HOMO/LUMO levels, and the absorption properties were altered mostly by substituting the N‑methylpyrrole moiety and further fine-tuned by modifying the benzene substituents.
View Article and Find Full Text PDFSci Rep
December 2024
Population Health and Host Pathogen Interactions Programs, Texas Biomedical Research Institute, San Antonio, TX, USA.
In recent decades, drug resistant (DR) strains of Mycobacterium tuberculosis (M.tb), the cause of tuberculosis (TB), have emerged that threaten public health. Although M.
View Article and Find Full Text PDFBioorg Chem
December 2024
CSIR- Indian Institute of Integrative Medicine, Canal Road, Jammu 180001, India; Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India. Electronic address:
Alantolactone and isoalantolactone are two isomeric sesquiterpene lactones that were isolated from Innula recemosa. Here, we are used for the semisynthesis of novel isoxazolidine hybrids of alantolactone and isoalantolactone through a two-step process: nitrone synthesis followed by nitrone 1,3-dipolar cycloaddition. The formation of the cycloadduct was well characterized via modern spectroscopic techniques such as HRMS, H NMR, C NMR, DEPT-90, DEPT-135, and 2D NMR.
View Article and Find Full Text PDFJ Phys Chem A
December 2024
Department of Chemistry, KAIST, Daejeon 34141, Republic of Korea.
A photodetachment and photoelectron spectroscopic study by employing a cryogenically cooled ion trap combined with a velocity-map imaging setup has been carried out to unravel the vibrational structures and autodetachment dynamics of the dipole-bound states (DBSs) of -, -, and -methylphenolate anions (-, -, and -CHPhO). The electron binding energy of the DBS increases monotonically with the increase of the neutral dipole moment to give respective values of 66 ± 15, 123 ± 18, or 154 ± 14 cm for the -, -, or -isomer. The different electron-donating effects of the methyl moieties in the three geometrically different isomers seem to be reflected in the experiment.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!