The potential anti-infective applications of metal oxide nanoparticles: A systematic review.

Wiley Interdiscip Rev Nanomed Nanobiotechnol

UCL School of Pharmacy, University College London, London, UK.

Published: March 2020

Microbial infections present a major global healthcare challenge, in large part because of the development of microbial resistance to the currently approved antimicrobial drugs. This demands the development of new antimicrobial agents. Metal oxide nanoparticles (MONPs) are a class of materials that have been widely explored for diagnostic and therapeutic purposes. They are reported to have wide-ranging antimicrobial activities and to be potent against bacteria, viruses, and protozoans. The use of MONPs reduces the possibility of resistance developing because they have multiple mechanisms of action (including via reactive oxygen species generation), simultaneously attacking many sites in the microorganism. However, despite this there are to date no MONPs clinically approved for antimicrobial therapy. This review explores the recent literature in this area, discusses the mechanisms of MONP action against microorganisms, and considers the barriers faced to the use of MONPs in humans. These include biological challenges, of which the potential for an immune response and off-target toxicity are key. We explore in detail the possible benefits/disbenefits of an immune response being initiated, and consider the effect of production method (chemical vs. green synthesis) on cytotoxicity. There are also a number of technical and manufacturing challenges hindering MONP translation to the clinic which are additionally discussed in depth. In the short term, there are potentially some "quick wins" from the repurposing of already-approved nanoparticle-based medicines for anti-infective applications, but a number of hurdles, both technical and biological, lie in the path to long-term clinical translation of new MONP-based formulations. This article is categorized under: Therapeutic Approaches and Drug Discovery > Nanomedicine for Infectious Disease Therapeutic Approaches and Drug Discovery > Emerging Technologies Toxicology and Regulatory Issues in Nanomedicine > Toxicology of Nanomaterials.

Download full-text PDF

Source
http://dx.doi.org/10.1002/wnan.1592DOI Listing

Publication Analysis

Top Keywords

anti-infective applications
8
metal oxide
8
oxide nanoparticles
8
approved antimicrobial
8
immune response
8
therapeutic approaches
8
approaches drug
8
drug discovery
8
potential anti-infective
4
applications metal
4

Similar Publications

Didemnins, a class of cyclic depsipeptides derived from marine organisms exhibit notable anticancer properties. Among them, Didemnin B has been extensively researched for its strong antitumor activity and progression to clinical trials. Nonetheless, its clinical application has been impeded by challenges like poor bioavailability and dose-limiting toxicity.

View Article and Find Full Text PDF

O-Methyldehydroserine, ΔSer(Me), is a non-standard α,β-dehydroamino acid, which occurs naturally in Cyrmenins with potential pharmaceutical application. The C-terminal part and the side chain of the ΔSer(Me) residue constitute the β-methoxyacrylate unit, responsible for antifungal activity of Cyrmenins. The short model, Ac-ΔSer(Me)-OMe, was analyzed considering the geometrical isomer Z () and E ().

View Article and Find Full Text PDF

B-box (BBX) transcription factors play crucial roles in plant growth, development, and defense responses to biotic and abiotic stresses. In this study, we cloned a BBX transcription factor gene, from cucumber and analyzed its role in the plant's defense against the feeding of . is expressed throughout all developmental stages in cucumber, with the highest expression in the leaves.

View Article and Find Full Text PDF

The development of innovative and effective strategies to combat fungal pathogens is critical to sustainable crop protection. Fungicides have been used for over two centuries, with traditional copper- and sulfur-based formulations still in use due to their broad-spectrum, multisite mode of action, which minimizes the risk of pathogen resistance. In contrast, modern systemic fungicides, though potent, often target a single site of action, leading to the accelerated emergence of resistant fungal strains.

View Article and Find Full Text PDF

A Simple One-Pot Method for the Synthesis of BiFeO/BiFeO Heterojunction for High-Performance Photocatalytic Degradation Applications.

Int J Mol Sci

December 2024

Joint International Research Laboratory of Information Display and Visualization, School of Electronic Science and Engineering, Southeast University, Nanjing 210096, China.

This study presents a facile one-pot synthesis method to fabricate BiFeO-BiFeO-BiO heterojunction photocatalysts with controllable compositions and pure phases. Three different binary heterojunctions (BiFeO/BiFeO, BiFeO/BiO, and BiFeO/BiO) and a ternary BiFeO/BiFeO/BiO heterojunction were formed, all exhibiting significantly enhanced photocatalytic performance for the degradation of methylene blue (MB) and phenol under visible light irradiation, outperforming the individual compositions. Notably, the BiFeO/BiFeO heterojunction achieved the highest degradation efficiency (93.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!