Shape memory polymers with silicon-containing segments.

J Mater Chem

Department of Biomedical Engineering, Texas A&M University, 3120 TAMU, College Station, TX, USA. ; Tel: +1 979 845 2406.

Published: March 2010

Thermoresponsive shape memory polymers are stimuli-responsive materials whose shape is modulated by heat. They have been investigated as smart materials in a variety of biomedical, industrial and aerospace applications. The vast majority of shape memory polymers have been limited to those prepared from organic polymers. In this present work, shape memory polymers comprised of inorganic silicon-containing polymer segments (polydimethylsiloxane, PDMS) and organic poly(ε-caprolactone) (PCL) segments were developed. Because of its low , PDMS served as a highly effective soft segment. The photochemical cure of diacrylated PCL --PDMS--PCL macromers with tailored PCL segment lengths produced networks with excellent mechanical properties, shape fixity, and shape recovery.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC6782064PMC
http://dx.doi.org/10.1039/b924032bDOI Listing

Publication Analysis

Top Keywords

shape memory
16
memory polymers
16
shape
7
polymers
5
polymers silicon-containing
4
silicon-containing segments
4
segments thermoresponsive
4
thermoresponsive shape
4
polymers stimuli-responsive
4
stimuli-responsive materials
4

Similar Publications

We demonstrate, using non-equilibrium molecular dynamics simulations, that lipid membrane capacitance varies with surface charge accumulation linked to membrane shape and curvature changes. Specifically, we show that lipid membranes exhibit a hysteretic response when exposed to oscillatory electric fields. The electromechanical coupling in these membranes leads to hysteretic buckling, in which the membrane can spontaneously buckle in one of two distinct directions along the electric field, even for the same ionic charge accumulation at the water-membrane interface.

View Article and Find Full Text PDF

Fabrication of a micropatterned shape-memory polymer patch with L-DOPA for tendon regeneration.

Biomater Sci

January 2025

Department of Nanobiomedical Science & BK21 FOUR micropatterned shape-memory NBM Global Research Center for Regenerative Medicine, Dankook University, Cheonan 31116, Republic of Korea.

A scaffold design for tendon regeneration has been proposed, which mimics the microstructural features of tendons and provides appropriate mechanical properties. We synthesized a temperature-triggered shape-memory polymer (SMP) using the ring-opening polymerization of polycaprolactone (PCL) with polyethylene glycol (PEG) as a macroinitiator. We fabricated a micropatterned patch using SMP capillary force lithography, which mimicked a native tendon, for providing physical cues and guiding effects.

View Article and Find Full Text PDF

A nutritious diet is crucial for good health and cognitive function, including working memory (WM). Nutrients like omega-3 fatty acids, antioxidants, and vitamins found in whole foods have been linked to improved WM. Examining the impact of dietary habits on WM in women, who face hormonal and health-related challenges, is important.

View Article and Find Full Text PDF

Poly(lactic acid) (PLA) exhibits excellent shape memory properties but suffers from brittleness and a high glass transition temperature (T), limiting its utility in flexible and durable applications. This study explored the modification of PLA properties through the incorporation of poly(ethylene glycol) (PEG), varying in both content (5-20 wt%) and molecular weight (4000-12,000 g/mol), to enhance its suitability for specific applications, such as medical splints. The PLA/PEG blend, containing 15 wt% PEG and with a molecular weight of 12,000 g/mol, exhibited superior shape fixity (99.

View Article and Find Full Text PDF

Microstructure and Thermal Cyclic Behavior of FeNiCoAlTaB High-Entropy Alloy.

Materials (Basel)

January 2025

Department of Materials Science and Engineering, National Taiwan University, Taipei 10617, Taiwan.

This study investigates the grain morphology, microstructure, magnetic properties and shape memory properties of an FeNiCoAlTaB (at%) high-entropy alloy (HEA) cold-rolled to 98%. The EBSD results show that the texture intensities of the samples annealed at 1300 °C for 0.5 or 1 h are 2.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!