Comparison of gaseous and particulate emissions from a pilot-scale combustor using three varieties of coal.

Fuel (Lond)

U. S. Environmental Protection Agency, Office of Research and Development, National Risk Management Research Laboratory, Air and Energy Management Division, Research Triangle Park, NC 27711, United States.

Published: January 2018

Gaseous and particulate emissions generated from the combustion of coal have been associated with adverse effects on human health and the environment, and have therefore been the subject of regulation by federal and state government agencies. Detailed emission characterizations are needed to better understand the impacts of pre- and post-combustion controls on a variety of coals found in the United States (U.S.). While the U.S. Environmental Protection Agency (EPA) requires industry reporting of emissions for criteria and several hazardous air pollutants (HAPs), many of the methods for monitoring and measuring these gaseous and particulate emissions rely on time-integrated sampling techniques. Though these emissions reports provide an overall representation of day-to-day operations, they represent well-controlled operations and do not encompass real combustion events that occur sporadically. The current study not only characterizes emissions from three coals (bituminous, sub-bituminous, and lignite), but also investigates the use of instrumentation for improved measurement and monitoring techniques that provide real-time, continuous emissions data. Testing was completed using the U.S. EPA's Multi-Pollutant Control Research Facility, a pilot-scale coal-fired combustor using industry-standard emission control technologies, in Research Triangle Park, North Carolina. Emissions were calculated based on measurements from the flue gas (pre- and post-electrostatic precipitator), to characterize gaseous species (CO, CO, O, NO, SO, other acid gases, and several organic HAPs) as well as fine and ultrafine particulate (mass, size distribution, number count, elemental carbon, organic carbon, and black carbon). Comparisons of traditional EPA methods to those made via Fourier Transfer Infrared (FTIR) Spectroscopy for CO, NO, and SO are also reported.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC6781234PMC
http://dx.doi.org/10.1016/j.fuel.2017.10.092DOI Listing

Publication Analysis

Top Keywords

gaseous particulate
12
particulate emissions
12
emissions
8
comparison gaseous
4
particulate
4
emissions pilot-scale
4
pilot-scale combustor
4
combustor three
4
three varieties
4
varieties coal
4

Similar Publications

Underestimated industrial ammonia emission in China uncovered by material flow analysis.

Environ Pollut

January 2025

State Key Laboratory of Pollution Control and Resources Reuse, School of Environment, Nanjing University, Nanjing, 210023, China; Collaborative Innovation Center of Atmospheric Environment and Equipment Technology, Nanjing University of Information Science & Technology, Nanjing, 210044, China. Electronic address:

Ammonia (NH) is crucial in fine particulate matter (PM) formation, but past estimations on industrial NH emissions remain highly uncertain. In this study, the flow of NH within air pollution control devices (APCDs) were investigated basing on material flow analysis with in-situ measurements of NH concentrations at the inlets and outlets of each APCD. Then, by combing emission factors updated with recent in-situ measurements and provincial-level activity data from statistical yearbooks and associated reports, NH emissions from various industrial sources, as well as their spatial distribution across China in 2020, were evaluated.

View Article and Find Full Text PDF

Evaluating the Laboratory Performance of Pellet-Fueled Semigasifier Cookstoves.

Environ Sci Technol

January 2025

Air Methods and Characterization Division, U.S. Environmental Protection Agency, Office of Research and Development, 109 T.W. Alexander Drive, Research Triangle Park, North Carolina 27709, United States.

This study examines three representative semigasifier cookstove models each burning four types of pelletized-biomass fuel (hardwood, peanut hull, rice husk, and wheat straw) using the International Organization for Standardization (ISO) 19867-1:2018 protocol. ISO tier ratings for fine particulate matter (PM) and carbon monoxide (CO) emissions ranged 1-4 and 2-5 (where 5 = cleanest), respectively, suggesting that pellet-fueled cookstoves may provide substantial emissions reductions, dependent upon stove/fuel matching and operation, over other biomass-fueled cooking alternatives. PM emission factors based on useful energy delivered (EF) varied by up to 25-fold, and organic and elemental carbon (OC and EC) EF values respectively varied by >200- and ∼100-fold, reflecting complex variability in PM composition.

View Article and Find Full Text PDF

In this study, the effect of additives on particulate matter (PM) and flue gas emissions during the co-combustion of poultry waste and pine woodchips in air and oxy-fuel combustion conditions was examined. The appropriate additive for the fuel mixture to reduce PM emissions has been selected by a fast screening method based on thermogravimetric analysis (TGA) in oxygen environment. Among the additives CaHPO, MgCO, MnCO, MgPO, kaolin, CaO, and Zn, the most suitable ones were determined as Zn and MgCO.

View Article and Find Full Text PDF

Active biomonitoring of mercury (Hg) using non-indigenous moss bags was performed for the first time within and around the former Hg mining area of Abbadia San Salvatore (Mt. Amiata, central Italy). The purpose was to discern the Hg spatial distribution, identify the most polluted areas, and evaluate the impacts of dry and wet deposition on mosses.

View Article and Find Full Text PDF

Association between exposure to environmental pollutants and increased oral health risks, a comprehensive review.

Front Public Health

January 2025

Guangdong Provincial Key Laboratory of Stomatology, Guanghua School of Stomatology, Sun Yat-sen University, Guangzhou, China.

The burden of disease and death attributable to environmental pollution is a growing public health challenge worldwide, particularly in developing countries. While the adverse effects of environmental pollution on oral health have garnered increasing attention, a comprehensive and systematic assessment remains lacking. This article delves into the intricate relationship between environmental pollution and oral health, highlighting significant impacts on various aspects such as dental caries, periodontal diseases, oral facial clefts, cancer, as well as other oral diseases.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!