The magnetic metal-organic framework FeO@(Fe-(benzene-1,3,5-tricarboxylic acid) (MMOF) was prepared, characterized and studied as a magnetic sorbent for the dispersive solid-phase extraction (DSPE) of several widely used blood lipid regulators (i.e., bezafibrate, clofibric acid, clofibrate, gemfibrozil and fenofibrate) from water samples. Characterization of the synthesized FeO@Fe-BTC magnetic nanomaterial was performed by Fourier transform infrared spectroscopy, powder X-ray diffractometry, thermogravimetric analysis, scanning electron microscopy and transmission electron microscopy. The magnetic nanocomposite was found to be chemically stable and to possess a large surface area (803.62 m/g) and pore volume (0.59 cm³/g). The concentrations of fibrates in different water samples were determined using HPLC-UV-Vis and confirmed by UPLC-MS/MS. Parameters affecting the extraction efficiency of magnetic-DSPE were studied and optimized. The maxima absorption capacities (Q) were determined to be (in mg/g) 197.0 for bezafibrate, 620.3 for clofibric acid, 537.6 for clofibrate, 288.7 gemfibrozil and 223.2 for fenofibrate. Validations of the optimized magnetic DSPE method for analyses at two fibrate concentrations in spiked water samples produced relative recovery values ≤ 70% for clofibrate and within the range of 80-100% for bezafibrate, clofibric acid, gemfibrozil and fenofibrate. LODs ranging from 4 μg/L for fenofibrate to 99 μg/L for gemfibrozil were obtained. The validated methodology produced recovery values ranging from 70 to 112% (relative standard deviations < 7%).
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.talanta.2019.120275 | DOI Listing |
Environ Technol
November 2024
School of Civil & Environmental Engineering and Geography Science, Ningbo University, Ningbo, People's Republic of China.
Front Chem
July 2024
Department of Pharmacy, University of Naples, Naples, Italy.
BAR502, a bile acid analogue, is active as dual FXR/GPBAR1 agonist and represents a promising lead for the treatment of cholestasis and NASH. In this paper we report the synthesis and the biological evaluation of a library of hybrid compounds prepared by combining, through high-yield condensation reaction, some fibrates with BAR502.The activity of the new conjugates was evaluated towards FXR, GPBAR1 and PPARα receptors, employing transactivation or cofactor recruitment assays.
View Article and Find Full Text PDFBiomed Pharmacother
July 2024
Centre for Host-Microbiome Interactions, Faculty of Dentistry, Oral & Craniofacial Sciences, King's College London, London SE1 9RT, UK; Science for Life Laboratory, KTH-Royal Institute of Technology, Stockholm SE-17165, Sweden. Electronic address:
Sarcopenia is a major public health concern among older adults, leading to disabilities, falls, fractures, and mortality. This study aimed to elucidate the pathophysiological mechanisms of sarcopenia and identify potential therapeutic targets using systems biology approaches. RNA-seq data from muscle biopsies of 24 sarcopenic and 29 healthy individuals from a previous cohort were analysed.
View Article and Find Full Text PDFChemosphere
July 2024
Department of Civil and Environmental Engineering, Seoul National University, 1 Gwanak-ro, Gwanak-gu, Seoul 08826, Republic of Korea. Electronic address:
Although a series of past studies proved the potential usage of Fe-based metal-organic frameworks (MOFs) as photocatalysts, there remains a knowledge gap of the photocatalytic mechanism stemming from the challenge to separate the simultaneous sorption and photocatalytic degradation. Thus, this article aimed to suggest a novel approach by desorbing target molecules during photocatalysis to excavate the underlying mechanisms of sorption and photocatalytic degradation. In this study, two Fe-based MOFs, MIL-101(Fe) and MIL-101(Fe)-NH, were selected to remove clofibric acid under visible light irradiation.
View Article and Find Full Text PDFAppl Microbiol Biotechnol
April 2024
Microbiology, Department of Biology, Utrecht University, Padualaan 8, Utrecht, 3584 CH, the Netherlands.
Water bodies are increasingly contaminated with a diversity of organic micropollutants (OMPs). This impacts the quality of ecosystems due to their recalcitrant nature. In this study, we assessed the removal of OMPs by spent mushroom substrate (SMS) of the white button mushroom (Agaricus bisporus) and by its aqueous tea extract.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!