Deoxynivalenol (DON) is a type B trichothecene that occurs predominantly in grains such as wheat, maize, and barley and has been implicated in incidents of mycotoxicoses in both humans and farm animals. In the present study, we chose Co γ-ray irradiation to degrade DON. First, the degradation effect of irradiation on DON was analyzed. Second, the toxicity analyses of radiolysis products were studied by oral gavage. The results indicated that Co γ-ray irradiation had significant degradation effect on pure DON: when 20 kGy γ-ray irradiation was used for 2 μg/mL DON in acetonitrile-water, the degradation efficiency of DON was 83%, and 2 μg/mL DON in ultra-pure water was completely degraded after 5 kGy γ-ray irradiation. The concentration of 200 μg/mL DON in ultra-pure water had significant toxicity to mice: decreased body weight gain and feed consumption as well as pathological changes in liver and kidney were observed compared with the control group. No significant toxicity was observed in mice that were given these degraded solutions treated by γ-ray irradiation, which indicated that the toxicity of radiolysis products in ultra-pure water had significantly decreased after treatment by γ-ray irradiation. This research offered some reference to detoxify DON in cereal grains.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.5740/jaoacint.19-0246 | DOI Listing |
Dalton Trans
January 2025
Shanxi Key Laboratory of Gas Energy Efficient and Clean Utilization, College of Chemistry and Chemical Engineering, Taiyuan University of Technology, Taiyuan, Shanxi 030024, China.
BiVO is considered as one of the important candidate materials for photoelectrochemical water splitting technology. However, the low efficiency of charge separation and poor kinetics of water oxidation limit its performance in PEC water splitting. In this work, a BiVO/MIL-53(FeNiCo) photoanode was constructed by a facile hydrothermal deposition method, exhibiting excellent water oxidation ability under AM 1.
View Article and Find Full Text PDFHealth Phys
January 2025
Nuclear Medicine and Molecular Imaging Sciences Program, Department of Clinical & Diagnostic Sciences, School of Health Professions, University of Alabama at Birmingham, Birmingham, AL.
Ionizing radiation on the skin has the potential to cause various sequelae affecting quality of life and even leading to death due to multi-system failure. The development of radiation dermatitis is attributed to oxidative damage to the skin's basal layer and alterations in immune response, leading to inflammation. Past studies have shown that [18F]F-2-fluoro-2-deoxyglucose positron emission tomography-computed tomography ([18F]F-FDG PET/CT) can be used effectively for the detection of inflammatory activity, especially in conditions like hidradenitis suppurativa, psoriasis, and early atherosclerosis.
View Article and Find Full Text PDFDalton Trans
January 2025
Department of Chemistry, University of Alberta, 11227 Saskatchewan Dr, Edmonton, Alberta, T6G 2G2, Canada.
This article provides an alternative pathway towards cyclosilapentenes (, SiH2-iPr and SpiroSi) involving the use of Rieke magnesium to activate the requisite dienes for synthesis. Subsequent metal-mediated dehydrocoupling of cyclosilapentene and mixtures with another cyclogermapentene gives oligomers with backbone Si-Si (number average molecular weight, = 1.0 kDa) and Si-Ge ( = 1.
View Article and Find Full Text PDFSmall
January 2025
Faculty of Physics and Astronomy, Adam Mickiewicz University, Poznan, 61-614, Poland.
The behavior of triple-cation mixed halide perovskite solar cells (PSCs) under ultrashort laser pulse irradiation at varying fluences is investigated, with a focus on local heating effects observed in femtosecond transient absorption (TA) studies. The carrier cooling time constant is found to increase from 230 fs at 2 µJ cm⁻ to 1.3 ps at 2 mJ cm⁻ while the charge population decay accelerates from tens of nanoseconds to the picosecond range within the same fluence range.
View Article and Find Full Text PDFChem Biodivers
January 2025
Yatsen Global Innovation R&D Center, Yatsen Global Innovation R&D Center, No. 11 Building, No. 210, Wenshui Road, Jingan District, Shanghai, CHINA.
A new depside glucoside rosarugoside E (1), together with four known compounds punicalagin (2), corilagin (3), granatin B (4) and ellagic acid (5) were isolated from the ethanol extract of pomegranate (Punica granatum L.) flower. Their structures were identified based on careful analysis of various spectral data including UV, IR, HR-ESI-MS, 1D and 2D NMR.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!