Generalized-Kohn-Sham (GKS) orbital energies obtained self-consistently from the random phase approximation energy functional with a semicanonical projection (spRPA) were recently shown to rival the accuracy of GW quasiparticle energies for valence ionization potentials. Here, we extend the scope of GKS-spRPA correlated one-particle energies from frontier-orbital ionization to core orbital ionization energies, which are notoriously difficult for GW and other response methods due to strong orbital relaxation effects. For a benchmark consisting of 23 1s core electron binding energies (CEBEs) of second-row elements, chemical shifts estimated from GKS-spRPA one-particle energies yield mean absolute deviations from experiment of 0.2 eV, which are significantly more accurate than the standard GW and comparable to Δ self-consistent field theory without semiempirical adjustment of the energy functional. For small ammonia clusters and cytosine tautomers, GKS-spRPA based chemical shifts capture subtle variations in covalent and noncovalent bonding environments; GKS-spRPA 1s CEBEs for these systems agree with equation-of-motion coupled cluster singles and doubles and ADC(4) results within 0.2-0.3 eV. Two perturbative approximations to GKS-spRPA orbital energies, which reduce the scaling from O(N) to O(N) and O(N), are introduced and tested. We illustrate the application of GKS-spRPA orbital energies to larger systems by using oxygen 1s CEBEs to probe solvation and packing effects in condensed phases of water. GKS-spRPA predicts a lowering of the oxygen 1s CEBE of approximately 1.6-1.7 eV in solid and liquid phases, consistent with liquid-jet X-ray photoelectron spectroscopy and gas phase cluster experiments. The results are rationalized by partitioning GKS-spRPA electron binding energies into static, relaxation, and correlation parts.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1063/1.5116908 | DOI Listing |
Phys Chem Chem Phys
January 2025
Guizhou Provincial Key Laboratory of Computing and Network Convergence, School of Information, Guizhou University of Finance and Economics, Guiyang, Guizhou 550025, P. R. China.
Developing superionic conductor (SIC) materials offers a promising pathway to achieving high ionic conductivity in solid-state electrolytes (SSEs). The LiGePS (LGPS) family has received significant attention due to its remarkable ionic conductivity among various SIC materials. molecular dynamics (AIMD) simulations have been extensively used to explore the diffusion behavior of Li ions in LiGePS.
View Article and Find Full Text PDFHeliyon
November 2024
A. Leon Linton Department of Mechanical, Robotics and Industrial Engineering, Lawrence Technological University, Southfield, MI, 48075, United States.
Co-firing of biomass with coal combines the environmental benefits of renewable biomass with the high energy content of coal. Although the common numerical simulation treats the biomass and coal particles with ideal morphology, real particles often demonstrate nonsmoothed surface and irregular shape. To understand the impact of particle morphology in a group of biomass and coal particles co-firing together and to inform simple models appropriate, this study investigated the interparticle effects among particles using realistic particle morphology, focusing on fluid dynamics such as temperature distribution, flow patterns and drag coefficients.
View Article and Find Full Text PDFJ Chem Phys
December 2024
Department of Chemistry, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801, USA.
The widely used thermal Hartree-Fock (HF) theory is generalized to include the effect of electron correlation while maintaining its quasi-independent-particle framework. An electron-correlated internal energy (or grand potential) is postulated in consultation with the second-order finite-temperature many-body perturbation theory (MBPT), which then dictates the corresponding thermal orbital (quasiparticle) energies in such a way that all fundamental thermodynamic relations are obeyed. The associated density matrix is of a one-electron type, whose diagonal elements take the form of the Fermi-Dirac distribution functions, when the grand potential is minimized.
View Article and Find Full Text PDFEntropy (Basel)
October 2024
Departamento de Física, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Ciudad Universitaria, Ciudad de Buenos Aires CP 1428, Argentina.
The propagation speeds of excitations are a crucial input in the modeling of interacting systems of particles. In this paper, we assume the microscopic physics is described by a kinetic theory for massless particles, which is approximated by a generalized relaxation time approximation (RTA) where the relaxation time depends on the energy of the particles involved. We seek a solution of the kinetic equation by assuming a parameterized one-particle distribution function (1-pdf) which generalizes the Chapman-Enskog (Ch-En) solution to the RTA.
View Article and Find Full Text PDFJ Chem Phys
November 2024
Theoretical Chemistry, Physical Chemistry Institute, Heidelberg University, D-69120 Heidelberg, Germany.
We investigate a trapped mixture of Bose-Einstein condensates consisting of a multiple number of P species. To be able to do so, an exactly solvable many-body model is called into play. This is the P-species harmonic-interaction model.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!