The ability of α-borylated naphthalene-based aromatic compounds is important because it provides ready access to interesting novel extended π-systems. In this report, we disclose the Ni-catalyzed α-selective C-H borylations of naphthalene-based aromatic compounds. The reaction proceeds with -xanthenoxanthene and other aromatic compounds to regioselectively afford the α-borylated products without directing groups. The selectivities of these transformations are different from those of Ir-catalyzed C-H borylation reactions and can be used in a complementary manner.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1021/acs.joc.9b02333 | DOI Listing |
Nat Chem
January 2025
School of Chemical and Physical Sciences, Victoria University of Wellington, Wellington, New Zealand.
Benzene reduction by molecular complexes remains an important synthetic challenge, requiring harsh reaction conditions involving group I metals. Reductions of benzene, to date, typically result in a loss of aromaticity, although the benzene tetra-anion, a 10π-electron system, has been calculated to be stable and aromatic. Due to the lack of sufficiently potent reductants, four-electron reduction of benzene usually requires the use of group I metals.
View Article and Find Full Text PDFSci Rep
January 2025
Institute of Chemistry, University of Miskolc, Miskolc-Egyetemváros, Miskolc, 3515, Hungary.
Aromatic π-complexes play a significant role in various chemical and biological systems, significantly influencing their physico-chemical and spectroscopic properties. The identification of new compounds capable of π-complex formation is therefore of great interest. The paper investigates the fluorescent properties of 1,5-diisocyanonaphthalene (1,5-DIN) in different aromatic solvents, demonstrating its potential for distinguishing between aromatics based on emission spectra.
View Article and Find Full Text PDFSci Rep
January 2025
Department of Chemistry, Clemson University, 211 S. Palmetto Blvd, Clemson, SC, 29634, USA.
Minimizing the oxidation of lipids remains one of the most important challenges to extend the shelf-life of food products and reduce food waste. While most consumer products contain antioxidants, the most efficient strategy is to incorporate combinations of two or more compounds, boosting the total antioxidant capacity. Unfortunately, the reasons for observing synergistic / antagonistic / additive effects in food samples are still unclear, and it is common to observe very different responses even for similar mixtures.
View Article and Find Full Text PDFBioorg Chem
December 2024
Biotechnology Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical Sciences, Mashhad, Iran; Department of Medicinal Chemistry, School of Pharmacy, Mashhad University of Medical Sciences, Mashhad, Iran. Electronic address:
In this study, novel 2-styrylquinoline derivatives possessing a planar aromatic system and a flexible side chain with an amino substituent were designed and synthesized as DNA-intercalating antitumor agents. The cytotoxic activity of the synthesized compounds was evaluated against four cancer cell lines including MCF-7 (breast cancer cells), A549 (lung epithelial cancer cells), HCT116 (colon cancer cells) and normal cell line L929 (mouse fibroblast cell line). The results displayed that the anti-cancer activity of the target quinolines is sensitive to the lipophilic nature of the C-6 and C-7 quinoline substituents.
View Article and Find Full Text PDFJ Environ Manage
January 2025
Shaanxi Key Laboratory of New Transportation Energy and Automotive Energy Saving, School of Energy and Electrical Engineering, Chang'an University, Xi'an, Shaanxi, 710064, PR China.
Benzene and phenol are representative aromatic compounds existing commonly in wastewater. The kinetics of oxidative degradation of benzene and phenol in supercritical water have been investigated in a flow reactor at 823 K and 250 atm, with the excess oxygen ratio ranging from 0.5 to 2.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!