Microbial communities within anaerobic ecosystems have evolved to degrade and recycle carbon throughout the earth. A number of strains have been isolated from anaerobic microbial communities, which are rich in carbohydrate active enzymes (CAZymes) to liberate fermentable sugars from crude plant biomass (lignocellulose). However, natural anaerobic communities host a wealth of microbial diversity that has yet to be harnessed for biotechnological applications to hydrolyze crude biomass into sugars and value-added products. This review highlights recent advances in 'omics' techniques to sequence anaerobic microbial genomes, decipher microbial membership, and characterize CAZyme diversity in anaerobic microbiomes. With a focus on the herbivore rumen, we further discuss methods to discover new CAZymes, including those found within multi-enzyme fungal cellulosomes. Emerging techniques to characterize the interwoven metabolism and spatial interactions between anaerobes are also reviewed, which will prove critical to developing a predictive understanding of anaerobic communities to guide in microbiome engineering.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.copbio.2019.08.015 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!