Mycobacterium proteins, especially cell wall associated proteins, interact with host macrophage to regulate the functions and cytokine production. So, identification and characterization of such proteins is essential for understanding tuberculosis pathogenesis. The role of the ABC transporter proteins in the pathophysiology and virulence of Mycobacterium tuberculosis is not clearly understood. In the present study, Rv1273c, an ABC transporter, has been expressed in a non-pathogenic and fast growing Mycobacterium smegmatis strain to explore its role in host pathogen interactions. Over expression of Rv1273c resulted in enhanced intracellular survival in macrophage as well as modified cell wall architecture. We found altered colony morphology and cell surface properties that might be linked with remodelling of bacterial cell wall which may help in the intracellular survival of mycobacterium. However, the enhanced intracellular survival was not found to be the consequence of an increased resistance to intracellular stresses. The activation of macrophage by Rv1273c was associated with perturbed cytokine production. Pharmacological inhibition experiment and western immunoblotting suggested that this altered cytokine profile was mediated possibly by NF-kB and p38 pathway in macrophage. Overall, the present findings indicated that Rv1273c enhanced mycobacterium persistence and mediated the evasion of immune responses during infection.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.ijbiomac.2019.09.103 | DOI Listing |
PLoS Negl Trop Dis
January 2025
Department of Pediatrics, National School of Tropical Medicine, Baylor College of Medicine, Houston, Texas, United States of America.
Background: The antigen Na-GST-1, expressed by the hookworm Necator americanus, plays crucial biochemical roles in parasite survival. This study explores the development of mRNA vaccine candidates based on Na-GST-1, building on the success of recombinant Na-GST-1 (rNa-GST-1) protein, currently assessed as a subunit vaccine candidate, which has shown promise in preclinical and clinical studies.
Methodology/findings: By leveraging the flexible design of RNA vaccines and protein intracellular trafficking signal sequences, we developed three variants of Na-GST-1 as native (cytosolic), secretory, and plasma membrane-anchored (PM) antigens.
Cells
January 2025
Department of Chemistry, Biology and Biotechnologies, University of Perugia, Via dell'Elce di Sotto 8, 06123 Perugia, Italy.
Cells
December 2024
Molecular and Cellular Microbiology Laboratory, Department of Biological Sciences, Old Dominion University, Norfolk, VA 23529, USA.
Within mammalian cells, diverse endocytic mechanisms, including phagocytosis, pinocytosis, and receptor-mediated endocytosis, serve as gateways exploited by many bacterial pathogens and toxins. Among these, caveolae-mediated endocytosis is characterized by lipid-rich caveolae and dimeric caveolin proteins. Caveolae are specialized microdomains on cell surfaces that impact cell signaling.
View Article and Find Full Text PDFInt J Mol Med
March 2025
Department of Biomedical Sciences, Chung Shan Medical University, Taichung 402306, Taiwan, R.O.C.
Oral squamous cell carcinoma (OSCC) is a type of head and neck cancer (HNC) with a high recurrence rate, which has been reported to be associated with the presence of cancer stem cells (CSCs). Tribbles pseudokinase 3 (TRIB3) is involved in intracellular signaling and the aim of the present study was to investigate the role of TRIB3 in the maintenance of CSCs. Analysis of The Cancer Genome Atlas database samples demonstrated a positive correlation between TRIB3 expression levels and shorter overall survival rates in patients with HNC.
View Article and Find Full Text PDFJIMD Rep
January 2025
The Morris Kahn Laboratory of Human Genetics, Faculty of Health Sciences Ben Gurion University Beer-Sheva Israel.
The tightly-regulated spatial and temporal distribution of zinc ion concentrations within cellular compartments is controlled by two groups of Zn transporters: the 14-member ZIP/SLC39 family, facilitating Zn influx into the cytoplasm from the extracellular space or intracellular organelles; and the 10-member ZnT/SLC30 family, mobilizing Zn in the opposite direction. Genetic aberrations in most zinc transporters cause human syndromes. Notably, previous studies demonstrated osteopenia and male-specific cardiac death in mice lacking the ZnT5/ zinc transporter, and suggested association of two homozygous frameshift variants with perinatal mortality in humans, due to hydrops fetalis and hypertrophic cardiomyopathy.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!