Cancer cachexia in thoracic malignancy: a narrative review.

Curr Opin Support Palliat Care

Institute of Immunity, Infection and Inflammation, University of Glasgow.

Published: December 2019

Purpose Of Review: Thoracic malignancies are amongst the most lethal of all cancers. Cancer cachexia lacks unanimously accepted diagnostic criteria, and therefore is referenced to as a conceptual framework whereby cancer cachexia is 'an ongoing loss of skeletal muscle mass (termed sarcopenia), with or without loss of fat mass that cannot be reversed by conventional nutritional support and leads to progressive functional impairment'. This review summarises the current evidence base in this field, including imaging techniques currently used to define sarcopenia, inflammatory and metabolic changes associated with the syndrome and ongoing research into potential treatment strategies.

Recent Findings: Sarcopenia is a key component of the cancer cachexia syndrome. It is common in patients with both early-stage and advanced NSCLC. Patients with sarcopenia have more treatment-related side effects and poorer overall survival compared with nonsarcopenic patients.

Summary: Early identification of cancer cachexia may facilitate stratification of patients most-at-risk and initiation of emerging anticachexia treatments. If these are proven to be effective, this strategy has the potential to improve tolerance to anti-cancer therapies, improving the quality of life, and perhaps the survival, of patients with thoracic malignancies.

Download full-text PDF

Source
http://dx.doi.org/10.1097/SPC.0000000000000465DOI Listing

Publication Analysis

Top Keywords

cancer cachexia
20
thoracic malignancies
8
cancer
5
cachexia thoracic
4
thoracic malignancy
4
malignancy narrative
4
narrative review
4
review purpose
4
purpose review
4
review thoracic
4

Similar Publications

Sarcopenia is defined as a muscle-wasting syndrome that occurs with accelerated aging, while cachexia is a severe wasting syndrome associated with conditions such as cancer and immunodeficiency disorders, which cannot be fully addressed through conventional nutritional supplementation. Sarcopenia can be considered a component of cachexia, with the bidirectional interplay between adipose tissue and skeletal muscle potentially serving as a molecular mechanism for both conditions. However, the underlying mechanisms differ.

View Article and Find Full Text PDF

Background: Cachexia is defined by chronic loss of fat and muscle, is a frequent complication of pancreatic ductal adenocarcinoma (PDAC), and negatively impacts patient outcomes. Nutritional supplementation cannot fully reverse tissue wasting, and the mechanisms underlying this phenotype are unclear. This work aims to define the relative contributions of catabolism and anabolism to adipose wasting in PDAC-bearing mice.

View Article and Find Full Text PDF

Background: Due to malnutrition and tumor cachexia, body composition (BC) is frequently altered and known to adversely affect short- and long-term results in patients with cholangiocarcinoma (CCA). Here, we explored immune cell populations in the tumor and liver of CCA patients with respect to BC.

Methods: A cohort of 96 patients who underwent surgery for CCA was investigated by multiplexed immunofluorescence (MIF) techniques with computer-based analysis on whole-tissue slide scans to quantify and characterize immune cells in normal liver and tumor regions.

View Article and Find Full Text PDF

Novel oral compound Z526 mitigates cancer-associated cachexia via intervening NF-κB signaling and oxidative stress.

Genes Dis

March 2025

Shanghai Engineering Research Center of Molecular Therapeutics and New Drug Development, School of Chemistry and Molecular Engineering, East China Normal University, Shanghai 200062, China.

Cancer-associated cachexia (CAC) is a severe metabolic disorder syndrome mainly characterized by muscle and fat loss, which accounts for one-third of cancer-related deaths. No effective therapeutic approach that could fully reverse CAC is available. NF-κB signaling and oxidative stress play vital roles in both muscle atrophy and fat loss in CAC.

View Article and Find Full Text PDF

Background/aim: The cachexia index (CXI) has been reported to be a useful indicator for predicting the prognosis of cancer patients. However, CXI calculation requires skeletal muscle index (SMI) measurements, which involves an analysis of computed tomography images using an imaging software program, which makes the calculation process highly complex and time-consuming. Recently, the modified cachexia index (mCXI), calculated using the urea-to-creatinine ratio (UCR) instead of SMI, has been reported to be a useful marker that is easier to calculate than CXI.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!