Precision Imprinted Nanostructural Wood.

Adv Mater

National Laboratory of Solid State Microstructures, Jiangsu Key Laboratory of Artificial Functional Materials, Department of Materials Science and Engineering, College of Engineering and Applied Sciences, Nanjing University, Nanjing, 210093, China.

Published: November 2019

Wood is a ubiquitous material, widely used in human society, that features naturally abundant, aligned longitudinal cells (e.g., tracheids in softwood and fibers/vessels in hardwood) with diameters of ≈50-1000 µm. Here, the realization of, fine patterns on a wood surface ranging in size from 40 nm to 50 µm by precision imprinting is described. The precision imprinting is enabled by releasing cellulose fibril aggregates from the bondage of lignin through the delignification process, then imprinting in wet condition and fixing the designed configuration in the dry state. Various precision structures on a wood surface using imprinting technology, including dot arrays, lines, triangular features, and other complex patterns, are successfully demonstrated. Even multiscale structures with nanosized lines on the surface of micrometer hemiballs can be acquired. As a proof of concept, the use of surface-imprinted wood as a microlens array (MLA), which exhibits superior imaging ability and thermal stability even at a high temperature up to 150 °C compared with traditional polystyrene MLA, is demonstrated. This precision imprinted wood may open new possibilities toward environmentally friendly devices and applications in optics, biology, electronics, etc.

Download full-text PDF

Source
http://dx.doi.org/10.1002/adma.201903270DOI Listing

Publication Analysis

Top Keywords

precision imprinted
8
wood surface
8
precision imprinting
8
wood
6
precision
5
imprinted nanostructural
4
nanostructural wood
4
wood wood
4
wood ubiquitous
4
ubiquitous material
4

Similar Publications

Magnetic molecularly imprinted polymers coupled with UPLC-MS/MS for simultaneous detection of 19 steroid hormones in human plasma.

J Chromatogr A

January 2025

State Key Laboratory of Chemical Resource Engineering, Beijing University of Chemical Technology, 15 3rd Ring North East Road, Chaoyang District, Beijing 100029, China. Electronic address:

Steroid hormones constitute a group of hormones with molecular weights ranging from 200 to 400 daltons, characterized by their highly similar chemical structures. Each hormone within this group holds significant value for the diagnosis of various diseases. Accurate clinical measurement of the levels of each hormone is crucial for the diagnosis in clinical settings.

View Article and Find Full Text PDF

Background: Neural tube defects (NTDs) are defined as an incomplete closure of the neural tube (NT), with a prevalence of 1.2 per 1000 live births around the world. Methylation of the maternally imprinted gene Insulin-like growth factor 2 (IGF2) is one of the epigenetic mechanisms that contribute significantly to the development of NTDs.

View Article and Find Full Text PDF

Concordance of Whole-Genome Long-Read Sequencing with Standard Clinical Testing for Prader-Willi and Angelman Syndromes.

J Mol Diagn

January 2025

Department of Laboratory Medicine and Pathology, University of Washington and Seattle Children's Hospital, Seattle, Washington; Division of Genetic Medicine, Department of Pediatrics, University of Washington and Seattle Children's Hospital, Seattle, Washington; Department of Genome Sciences, University of Washington, Seattle, Washington; Brotman Baty Institute for Precision Medicine, University of Washington, Seattle, Washington. Electronic address:

Article Synopsis
  • Current clinical testing for imprinting disorders is complicated and usually involves several tests to get a clear diagnosis.
  • We explored the use of whole-genome long-read sequencing (LRS) as a single test to analyze different genetic variations and methylation patterns in individuals with Prader-Willi or Angelman syndrome.
  • Our results showed that LRS can accurately diagnose these conditions efficiently and could simplify testing while lowering costs and speeding up results in clinical settings.
View Article and Find Full Text PDF

Dual-template epitope imprinted nanoparticles for anti-glycolytic tumor-targeted treatment.

J Colloid Interface Sci

December 2024

State Key Laboratory of Medicinal Chemical Biology, Tianjin Key Laboratory of Biosensing and Molecular Recognition, Research Center for Analytical Sciences, College of Chemistry, Nankai University, Tianjin 300071, China; National Chromatographic Research and Analysis Center, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, China. Electronic address:

Glycolysis provides tumors with abundant nutrients through glucose (Glu) metabolism. As a therapeutic target, precise targeting and effective inhibition of the glycolysis process remains a major challenge in anti-metabolic therapy. In this study, a novel dual-template molecularly imprinted polymer (D-MIP), capable of specifically recognizing glucose transporter member 1 (GLUT1) and hexokinase-2 (HK2) was prepared for anti-glycolytic tumor therapy.

View Article and Find Full Text PDF

This study developed potentiometric sensors for detecting lurasidone HCl (LSH), a vital drug for treating schizophrenia and bipolar I disorder, in pharmaceutical formulations and biological samples. The sensors are based on screen-printed electrodes (SPE) modified with a molecularly imprinted polymer (MIP) synthesized using lurasidone as a template, 1-vinyl-2-pyrrolidine (VP) as a functional monomer, ethylene glycol dimethacrylate (EGDMA) as a crosslinker, and benzoyl peroxide as an initiator. The SPE was further modified with a conductive polyaniline (PANI) film and a polyvinyl chloride (PVC) layer containing MIP as an ionophore and multiwalled carbon nanotubes (MWCNT) as a transducing material along with 2-nitrophenyl octyl ether (2-NPOE) as plasticizer.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!