Solution-processed 2D organic semiconductors (OSCs) have drawn considerable attention because of their novel applications from flexible optoelectronics to biosensors. However, obtaining well-oriented sheets of 2D organic materials with low defect density still poses a challenge. Here, a highly crystallized 2,9-didecyldinaphtho[2,3-b:2',3'-f]thieno[3,2-b]thiophene (C-DNTT) monolayer crystal with large-area uniformity is obtained by an ultraslow shearing (USS) method and its growth pattern shows a kinetic Wulff's construction supported by theoretical calculations of surface energies. The resulting seamless and highly crystalline monolayers are then used as templates for thermally depositing another C-DNTT ultrathin top-up film. The organic thin films deposited by this hybrid approach show an interesting coherence structure with a copied molecular orientation of the templating crystal. The organic field-effect transistors developed by these hybrid C-DNTT films exhibit improved carrier mobility of 14.7 cm V s as compared with 7.3 cm V s achieved by pure thermal evaporation (100% improvement) and 2.8 cm V s achieved by solution sheared monolayer C-DNTT. This work establishes a simple yet effective approach for fabricating high-performance and low-cost electronics on a large scale.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC6774035PMC
http://dx.doi.org/10.1002/advs.201900775DOI Listing

Publication Analysis

Top Keywords

field-effect transistors
8
organic semiconductors
8
developed hybrid
8
organic
5
transistors based
4
based organic
4
semiconductors developed
4
hybrid deposition
4
deposition method
4
method solution-processed
4

Similar Publications

Ferroelectric and Optoelectronic Coupling Effects in Layered Ferroelectric Semiconductor-Based FETs for Visual Simulation.

Adv Sci (Weinh)

January 2025

Technical Center for Multifunctional Magneto-Optical Spectroscopy (Shanghai), Engineering Research Center of Nanophotonics & Advanced Instrument (Ministry of Education), Department of Physics, School of Physics and Electronic Science, East China Normal University, Shanghai, 200241, China.

Controlling polarization states of ferroelectrics can enrich optoelectronic properties and functions, offering a new avenue for designing advanced electronic and optoelectronic devices. Here, ferroelectric semiconductor-based field-effect transistors (FeSFETs) are fabricated, where the channel is a ferroelectric semiconductor (e.g.

View Article and Find Full Text PDF

Spiking neurons are essential for building energy-efficient biomimetic spatiotemporal systems because they communicate with other neurons using sparse and binary signals. However, the achievable high density of artificial neurons having a capacitor for emulating the integrate function of biological neurons has a limit. Furthermore, a low-voltage operation (<1.

View Article and Find Full Text PDF

This study explores the concept of molecular orbital tuning for organic semiconductors through the use of '-diethynylated derivatives of 6,13-dihydro-6,13-diazapentacene ( and ). These novel molecules maintain the same molecular geometry and π-π stacking as their parent pentacene derivatives ( and ), as confirmed by X-ray crystallography. However, they exhibit altered frontier molecular orbitals in terms of the phase, nodal properties, and energy levels.

View Article and Find Full Text PDF

High-Performance Edge-Contact Monolayer Molybdenum Disulfide Transistors.

Research (Wash D C)

January 2025

School of Integrated Circuits and Beijing Advanced Innovation Center for Integrated Circuits, Peking University, Beijing 100871, China.

Edge contact is essential for achieving the ultimate device pitch scaling of stacked nanosheet transistors with monolayer 2-dimensional (2D) channels. However, due to large edge-contact resistance between 2D channels and contact metal, there is currently a lack of high-performance edge-contact device technology for 2D material channels. Here, we report high-performance edge-contact monolayer molybdenum disulfide (MoS) field-effect transistors (FETs) utilizing well-controlled plasma etching techniques.

View Article and Find Full Text PDF

Zinc oxide (ZnO) thin-film transistors (TFTs) can be promising for applications in wide-band light absorption. However, they suffer from retarded photoresponse characteristics due to atomic defects and the resulting localized electronic states. To investigate the photoinduced localized states of the ZnO TFTs, here, we combine X-ray photoelectron spectroscopy, atomic force microscopy, and density functional theory (DFT) calculations.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!