Pineapple ( (L.) Merr.) is a good source of bromelain (B) and also contain peroxidase. The objective of this study is isoaltion of bromelain plus peroxidase (BP) from the pineapple fruit to evaluate the anticancer activity of BP from the pineapple fruit of Tripura, compared to commercial bromelain against ascitic Dalton's lymphoma cells (DLA) in mice. By acetone precipitation BP was isolated from the pineapple. Animals bearing DLA, receive B and BP orally for 15 alternative days. Apoptotic proteins are assayed using western blot. BP treated mice showed recover of hemoglobin and WBC count compared to control lymphoma animal. The animal showed significant reduction of body weight due to reduced tunor load and elevated reactive oxygen species (ROS) production, elevated levels of vitamin C and vitamin E and other antioxidants in blood after BP treatment. Histology of liver and kidney also shows restored architecture in BP treated animal compared to only B treated group. BP treatment upregulates the cytochrome C, BAD, and BAX protein and downregulates the Bcl-2 and NF-kβ occuring upon BP treatment in the DLA cells collected from lymphoma animal. This induce the apoptosis of DLA cells in lymphoma animal and reduce the tumor load. The present findings suggest that BP from pineapple improves the survival of the induced lymphoma animal compared to only B which may be used as therapeutic target.

Download full-text PDF

Source
http://dx.doi.org/10.1080/01635581.2019.1670217DOI Listing

Publication Analysis

Top Keywords

lymphoma animal
16
bromelain peroxidase
12
pineapple fruit
8
animal compared
8
dla cells
8
lymphoma
6
animal
6
pineapple
5
bromelain
4
peroxidase reduces
4

Similar Publications

Identification of a novel TOP2B::AFF2 fusion gene in B-cell acute lymphoblastic leukemia.

Sci Rep

January 2025

Department of Hematology and Oncology, National Clinical Research Center for Child Health and Disorders, Ministry of Education Key Laboratory of Child Development and Disorders, Chongqing Key Laboratory of Pediatric Metabolism and Inflammatory Diseases, Children's Hospital of Chongqing Medical University, No 136 Zhongshan 2 road, YuZhong district, Chongqing, 400014, China.

Genetic alterations play a pivotal role in leukemic clonal transformation, significantly influencing disease pathogenesis and clinical outcomes. Here, we report a novel fusion gene and investigate its pathogenic role in acute lymphoblastic leukemia (ALL). We engineer a transposon transfection system expressing the TOP2B::AFF2 transcript and introduce it into Ba/F3 cells.

View Article and Find Full Text PDF

Chronic lymphocytic leukemia is a malignant lymphoproliferative disorder for which primary or acquired drug resistance represents a major challenge. To investigate the underlying molecular mechanisms, we generate a mouse model of ibrutinib resistance, in which, after initial treatment response, relapse under therapy occurrs with an aggressive outgrowth of malignant cells, resembling observations in patients. A comparative analysis of exome, transcriptome and proteome of sorted leukemic murine cells during treatment and after relapse suggests alterations in the proteasome activity as a driver of ibrutinib resistance.

View Article and Find Full Text PDF

T cell lymphoma constitutes a complex group of diseases, characterized by heterogeneous molecular features and clinical symptoms, and a dismal outcome no matter the therapeutic strategy chosen. In an attempt to improve patients' survival chances, treatment combinations (chemotherapy, radiotherapy, immunotherapy, gene therapy and thermotherapy) have been tested for their synergistic effects that may dramatically improve outcomes and reduce the side effects of each single modality treatment when therapeutic effects add up while side effects are distributed. In this context, nanoscale drug delivery agents have been developed and exploited to enhance the release of drugs in the treatment of several diseases, showing potential benefits in terms of pharmaceutical flexibility, selectivity, dose reduction and minimization of adverse effects.

View Article and Find Full Text PDF

Objectives: Acute T-cell lymphoblastic leukemia (T-ALL) is a severe hematologic malignancy with limited treatment options and poor long-term survival. This study explores the role of IKZF1 in regulating BCL-2 expression in T-ALL.

Methods: CUT&Tag and CUT&Run assays were employed to assess IKZF1 binding to the BCL-2 promoter.

View Article and Find Full Text PDF

Update on the Progress of Musashi-2 in Malignant Tumors.

Front Biosci (Landmark Ed)

January 2025

Department of Hepatobiliary and Pancreatic Surgery, Shanxi Bethune Hospital, Shanxi Academy of Medical Sciences, Tongji Shanxi Hospital, Third Hospital of Shanxi Medical University, 030032 Taiyuan, Shanxi, China.

Since the discovery of the Musashi (MSI) protein, its ability to affect the mitosis of Drosophila progenitor cells has garnered significant interest among scientists. In the following 20 years, it has lived up to expectations. A substantial body of evidence has demonstrated that it is closely related to the development, metastasis, migration, and drug resistance of malignant tumors.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!