Intrinsically disordered proteins (IDPs) are flexible biomolecules whose essential functions are defined by their dynamic nature. Nuclear magnetic resonance (NMR) spectroscopy is ideally suited to the investigation of this behavior at atomic resolution. NMR relaxation is increasingly used to detect conformational dynamics in free and bound forms of IDPs under conditions approaching physiological, although a general framework providing a quantitative interpretation of these exquisitely sensitive probes as a function of experimental conditions is still lacking. Here, measuring an extensive set of relaxation rates sampling multiple-time-scale dynamics over a broad range of crowding conditions, we develop and test an integrated analytical description that accurately portrays the motion of IDPs as a function of the intrinsic properties of the crowded molecular environment. In particular we observe a strong dependence of both short-range and long-range motional time scales of the protein on the friction of the solvent. This tight coupling between the dynamic behavior of the IDP and its environment allows us to develop analytical expressions for protein motions and NMR relaxation properties that can be accurately applied over a vast range of experimental conditions. This unified dynamic description provides new insight into the physical behavior of IDPs, extending our ability to quantitatively investigate their conformational dynamics under complex environmental conditions, and accurately predicting relaxation rates reporting on motions on time scales up to tens of nanoseconds, both and .
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1021/jacs.9b09002 | DOI Listing |
J Biol Chem
December 2024
European Research Institute for the Biology of Ageing, University of Groningen, University Medical Center Groningen, Groningen, the Netherlands. Electronic address:
The formation of biomolecular condensates contributes to intracellular compartmentalization, and plays an important role in many cellular processes. The characterization of condensates is however challenging, requiring advanced biophysical or biochemical methods that are often less suitable for in vivo studies. A particular need for easily accessible yet thorough methods that enable the characterization of condensates across different experimental systems thus remains.
View Article and Find Full Text PDFProtein Sci
January 2025
Department of Physics, University of Toronto, Toronto, Ontario, Canada.
The point mutation N642H of the signal transducer and activator of transcription 5B (STAT5B) protein is associated with aggressive and drug-resistant forms of leukemia. This mutation is thought to promote cancer due to hyperactivation of STAT5B caused by increased stability of the active, parallel dimer state. However, the molecular mechanism leading to this stabilization is not well understood as there is currently no structure of the parallel dimer.
View Article and Find Full Text PDFProtein Sci
January 2025
Department of Biology, MIT, Cambridge, Massachusetts, USA.
Protein-protein interactions are often mediated by a modular peptide recognition domain binding to a short linear motif (SLiM) in the disordered region of another protein. To understand the features of SLiMs that are important for binding and to identify motif instances that are important for biological function, it is useful to examine the evolutionary conservation of motifs across homologous proteins. However, the intrinsically disordered regions (IDRs) in which SLiMs reside evolve rapidly.
View Article and Find Full Text PDFiScience
December 2024
Center for Comparative Biomedicine, Ministry of Education Key Laboratory of Systems Biomedicine, State Key Laboratory of Medical Genomics, Institute of Systems Biomedicine, Shanghai Jiao Tong University, Shanghai 200240, China.
As an essential regulator of higher-order chromatin structures, CCCTC-binding factor (CTCF) is a highly conserved protein with a central DNA-binding domain of 11 tandem zinc fingers (ZFs), which are flanked by amino (N-) and carboxy (C-) terminal domains of intrinsically disordered regions. Here we report that CRISPR deletion of the entire C-terminal domain of alternating charge blocks decreases CTCF DNA binding but deletion of the C-terminal fragment of 116 amino acids results in increased CTCF DNA binding and aberrant gene regulation. Through a series of genetic targeting experiments, in conjunction with electrophoretic mobility shift assay (EMSA), circularized chromosome conformation capture (4C), qPCR, chromatin immunoprecipitation with sequencing (ChIP-seq), and assay for transposase-accessible chromatin with sequencing (ATAC-seq), we uncovered a negatively charged region (NCR) responsible for weakening CTCF DNA binding and chromatin accessibility.
View Article and Find Full Text PDFBiophys J
December 2024
Institute for Integrated Radiation and Nuclear Science, Kyoto University, Kumatori, Sennan-gun, Osaka 590-0494 Japan. Electronic address:
Intrinsically disordered proteins (IDPs) show structural changes stimulated by changes in external conditions. This study aims to reveal the temperature dependence of the structure and dynamics of the intrinsically disordered region of Hef, one of the typical IDPs, using an integrative approach. Small-angle X-ray scattering (SAXS) and circular dichroism (CD) studies revealed that the radius of gyration and ellipticity at 222 nm remained constant up to 313-323 K, followed by a decline above this temperature range.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!