Aroma Molecules as Dynamic Volatile Surfactants: Functionality beyond the Scent.

ACS Appl Mater Interfaces

Chair of Colloid Chemistry, Faculty of Chemistry , Moscow State University, 1-3 Leninskiye Gory , 119991 Moscow , Russia.

Published: October 2019

Understanding of nonequilibrium processes at dynamic interfaces is indispensable for advancing design and fabrication of solid-state and soft materials. The research presented here unveils specific interfacial behavior of aroma molecules and justifies their usage as multifunctional volatile surfactants. As nonconventional volatile amphiphiles, we study commercially available poorly water-soluble compounds from the classes of synthetic and essential flavor oils. Their disclosed distinctive feature is a high dynamic interfacial activity, so that they decrease the surface tension of aqueous solutions on a time scale of milliseconds. Another potentially useful property of such amphiphiles is their volatility, so that they notably evaporate from interfaces on a time scale of seconds. This behavior allows for control of wetting and spreading processes. A revealed synergetic interfacial behavior of mixtures of conventional and volatile surfactants is attributed to a decrease of the activation barrier as a result of high statistical availability of new sites at the surface upon evaporation of the volatile component. Our results offer promising advantages in manufacturing technologies which involve newly creating interfaces, such as spraying, coating technologies, ink-jet printing, microfluidics, laundry, and stabilization of emulsions in cosmetic and food industry, as well as in geosciences for controlling aerosol formation.

Download full-text PDF

Source
http://dx.doi.org/10.1021/acsami.9b15596DOI Listing

Publication Analysis

Top Keywords

volatile surfactants
12
aroma molecules
8
interfacial behavior
8
time scale
8
volatile
5
molecules dynamic
4
dynamic volatile
4
surfactants functionality
4
functionality scent
4
scent understanding
4

Similar Publications

Chemical Fate of Particulate Sulfur from Nighttime Oxidation of Thiophene.

ACS EST Air

December 2024

Department of Environmental Sciences, University of California, Riverside, California 92521, United States.

Sulfur-containing volatile organic compounds emitted during wildfire events, such as dimethyl sulfide, are known to form secondary aerosols containing inorganic sulfate (SO ) and surfactant-like organic compounds; however, little is known about the fate of sulfur in other emitted reduced organosulfur species. This study aimed to determine the sulfurous product distribution resulting from the nighttime oxidation of thiophene as a model system. Ion chromatography (IC) and aerosol mass spectrometry (a mini aerosol mass spectrometer, mAMS) were used to constrain the proportions of sulfurous compounds produced under wildfire-relevant conditions ([NO]/[O] = 0.

View Article and Find Full Text PDF

Natural deep eutectic solvents (NADES) represent a significant advance in green chemistry, offering an eco-friendly alternative to conventional organic solvents for applications in extraction, reaction media, and formulations. This study explores the application of NADES in essential oil formulations, using lavender essential oil (LEO) to investigate the solubilization and release of volatile organic compounds (VOCs). Two distinct NADES formulations were evaluated: hydrophilic NADES combined with surfactants, and hydrophobic NADES.

View Article and Find Full Text PDF

Preparation of PLA Nanoparticles and Study of Their Influencing Factors.

Molecules

November 2024

Liaoning Academy of Agricultural Sciences, Shenyang 110161, China.

Nanoparticles (NPs) have attractive properties that have received impressive consideration in the last few decades. Polylactic acid nanoparticles (PLA-NPs) stand out as a biodegradable polyester with excellent biocompatibility. This investigation introduces PLA-NPs prepared by using the emulsification-solvent volatilization (O/W) method.

View Article and Find Full Text PDF

The cattle tick Rhipicephalus microplus is prevalent in tropical and subtropical regions, causing substantial economic losses due to its resistance to conventional acaricides. There is an urgent need to identify safe and effective new acaricidal agents. Essential oils and their volatile compounds are promising alternatives.

View Article and Find Full Text PDF

Depending on the soybean processing plant, gums and soapstocks may be added back to soybean meal during soybean processing. Despite potential effects on soybean meal quality, there is limited information available on the composition and variation in soybean by-products and the resulting soybean meal if by-products are added back during processing. A total of 36 soybean by-product samples from 14 plants across 8 different companies were examined in an industry survey evaluating the composition and variation of soybean gums and soapstocks across the United States.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!