Aberrant activation of Homeobox genes in human cancers has long been documented, whereas the mechanisms underlying remain largely obscure. Super-enhancers (SEs) act as key regulatory elements for both cell identity genes and cancer genes. Herein, we reported that SE-associated HOXB gene cluster represented a common feature of colorectal cancer (CRC) cell lines and multiple HOXB genes within this cluster were overexpressed in CRC. Among them, we found that HOXB8 was oncogenic and its activation in CRC was driven by SE instead of genetic alteration. We further demonstrated that the master transcription factor MYC preferentially occupied SEs over TEs (typical enhancers) and regulated HOXB8 transcription by binding to the active elements of its SE. HOXB8 silencing induced reversal of transcriptional signatures associated with malignant phenotypes of CRC. Mechanistically, HOXB8 interacted with a key metastasis regulator BACH1 and instigated BACH1-mediated transcriptional cascade by directly occupying and activating BACH1 gene transcription together with BACH1 itself. Lastly, the relevance of HOXB8 activation in clinical settings was strengthened by its close association with prognostic outcomes of CRC patients.

Download full-text PDF

Source
http://dx.doi.org/10.1038/s41388-019-1013-1DOI Listing

Publication Analysis

Top Keywords

colorectal cancer
8
crc
5
hoxb8
5
oncogenic hoxb8
4
hoxb8 driven
4
driven myc-regulated
4
myc-regulated super-enhancer
4
super-enhancer potentiates
4
potentiates colorectal
4
cancer invasiveness
4

Similar Publications

Background: Colorectal cancer (CRC) is characterized by poor responsiveness to immune evasion and immunotherapy. RNA 7-methylguanine (m7G) modification plays a key role in tumorigenesis. However, the mechanisms by which m7G-modified RNA metabolism affects tumor progression are not fully understood, nor is the contribution of m7G-modified RNA to the CRC immune microenvironment.

View Article and Find Full Text PDF

Background: Gasdermin D (GSDMD) is a key effector molecule that activates pyroptosis through its N terminal domain (GSDMD-NT). However, the roles of GSDMD in colorectal cancer (CRC) have not been fully explored. The role of the full-length GSDMD (GSDMD-FL) is also not clear.

View Article and Find Full Text PDF

Background: The treatment of advanced colorectal cancer (CRC) has progressed slowly, with chemotherapy combined with targeted therapy being the first-line treatment for the disease, but the improvement in efficacy is not satisfactory. Compound Kushen injection (CKI) is one of the representative drugs of anti-cancer Chinese herbal injection drugs, which has been widely used in the adjunct treatment of cancer in China. The aim of this trial is to evaluate the efficacy and safety of CKI combined with first-line treatment of advanced CRC.

View Article and Find Full Text PDF

Wnt signaling is essential for cell growth and tumor formation and is abnormally activated in colorectal cancer (CRC), contributing to tumor progression; however, the specific role and regulatory mechanisms involved in tumor development remain unclear. Here, we show that Ephexin1, a guanine nucleotide exchange factor, is significantly overexpressed in CRC and is correlated with increased Wnt/β-catenin pathway activity. Through comprehensive analysis, including RNA sequencing data from TCGA and functional assays, we observed that Ephexin1 promotes tumor proliferation and migration by activating the Wnt/β-catenin pathway.

View Article and Find Full Text PDF

Corrigendum to "Colorectal cancer cells establish metabolic reprogramming with cancer-associated fibroblasts (CAFs) through lactate shuttle to enhance invasion, migration, and angiogenesis" [Int. Immunopharmacol. 143 (2024) 113470].

Int Immunopharmacol

December 2024

Department of Pharmacology, School of Pharmaceutical Sciences, Shandong University, 44 West Wenhua Road, Jinan 250012, China; Key Laboratory of Chemical Biology (Ministry of Education), School of Pharmaceutical Science, Shandong University, China; Shandong Cancer Hospital and Institute, 440 Jiyan Road, Jinan 250117, Shandong Province, China. Electronic address:

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!