A new super resolution imaging technique which potentially enables sub-µm spatial resolution, using a detector of pixels much larger than the spatial resolution, is proposed. The method utilizes sample scanning through a large number of identical X-ray microprobes periodically spaced (the period corresponds to a multiple of the pixel size), which reduces drastically the scanning time. The information about the sample illuminated by the microprobes is stored by large detector pixels. Using these data and sample position information, a super-resolution image reconstruction is performed. With a one-dimensional (1D) high aspect ratio nickel single lens array designed for theoretically expected sub-µm microprobes at 17 keV and fabricated by deep X-ray lithography and electroforming technique, 2 µm X-ray microprobes with a period of 10 µm were achieved. We performed a first experiment at KARA synchrotron facility, and it was demonstrated that the smallest structure of a test pattern with a size of 1.5 µm could be easily resolved by using images generated from a detector having a pixel size of 10.4 µm. This new approach has a great potential for providing a new microscopic imaging modality with a large field of view and short scan time.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC6779765 | PMC |
http://dx.doi.org/10.1038/s41598-019-50869-8 | DOI Listing |
Scientific-grade spectrometers with high hyperspectral resolution and high spectral accuracy are desirable in miniaturized optical systems to maintain stable and real-time spectral sampling. Fourier transform spectrometers that utilize high-precision moving mirrors generally struggle to enhance their miniaturization and stable real-time performance. A static infrared spectral measurement method is proposed that uses micro/nano-optical devices as the core of static interference and lightweight imaging.
View Article and Find Full Text PDFThis work proposes a large aperture liquid crystal lens array based on a novel layered combined electrode (LCE) structure. A large aperture (800µm) is achieved by strategically positioning pixel electrodes on either side of the LC lens and auxiliary electrodes at its center. This design effectively doubles the LC lens aperture compared to conventional structures, achieving this at a significantly lower voltage.
View Article and Find Full Text PDFConventional light field measurement using a micro-lens array suffers from grid-like artifacts in the refocused image because the sub-aperture images are sampled at linear and equal intervals like a grid pattern. In this study, we propose a method for measuring light field using a pair of wedge prisms and a method for calibrating the sub-aperture position. The epitrochoids trajectory of rays generated by rotating prisms yields unequal intervals and variable sampling of the sub-aperture position.
View Article and Find Full Text PDFThis work investigates how misalignments of collimation lenses affect two performance criteria: minimum throughput within an angular window and maximum beam height. Based on these criteria, we establish an alignment concept for the first section of a LiDAR emitter. The performance criteria are derived from the overall LiDAR system requirements and applied to an optical system consisting of a laser diode array source, a microlens array for slow-axis collimation, and an acylinder for fast-axis collimation.
View Article and Find Full Text PDFPrecision glass molding (PGM) technology, as an efficient and straightforward method for producing glass lenses, has been widely applied in the mass production of aspheric glass lenses. However, molding complex surfaces such as free-form and array surfaces is still in its infancy. To reveal the variations of temperature and stress of microlens array (MLA) optical elements during the molding process, a simulation model was established using the finite element method (FEM), and the heating and forming stages of a chalcogenide glass MLA optical element were studied.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!