There are many industrially-relevant enzymes that while active, are severely limited by thermodynamic, kinetic, or stability issues (isomerases, lyases, transglycosidases). In this work, we study Lactobacillus sakei L-arabinose isomerase (LsLAI) for D-galactose to D-tagatose isomerization-that is limited by all three reaction parameters. The enzyme demonstrates low catalytic efficiency, low thermostability at temperatures > 40 °C, and equilibrium conversion < 50%. After exploring several strategies to overcome these limitations, we show that encapsulating LsLAI in gram-positive Lactobacillus plantarum that is chemically permeabilized enables reactions at high rates, high conversions, and elevated temperatures. In a batch process, this system enables ~ 50% conversion in 4 h starting with 300 mM galactose (an average productivity of 37 mM h), and 85% conversion in 48 h. We suggest that such an approach may be invaluable for other enzymatic processes that are similarly kinetically-, thermodynamically-, and/or stability-limited.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC6779876 | PMC |
http://dx.doi.org/10.1038/s41467-019-12497-8 | DOI Listing |
J Agric Food Chem
November 2024
State Key Laboratory of Marine Food Processing and Safety Control, College of Food Science and Engineering, Ocean University of China, Qingdao 266404, PR China.
The application of agarose oligosaccharides has garnered great attention, with their biological activities varying among different structures. However, it still meets a great bottleneck for the targeted production of odd-numbered neoagarooligosaccharides (NAOSs), such as neoagarotriose (NA3), due to the lack of one-step hydrolases. In this work, the α-agarase AgaA33 and β-galactosidase BgaD were synergistically used to prepare NA3 with agarose as a substrate.
View Article and Find Full Text PDFBioresour Technol
October 2023
School of Biochemical Engineering, Pontificia Universidad Católica de Valparaíso (PUCV), Valparaíso, Chile. Electronic address:
Cellobiose 2-epimerase from Caldicellulosiruptor saccharolyticus (CsCE) can epimerize and isomerize lactose into epilactose and lactulose respectively. Competition between these reactions reactions has prompted the search for new enzymes to drive the reaction in one direction or the other. The isomerization and epimerization capacity of a novel mutant CsCE (CsCE H356N) was evaluated, obtaining a maximum lactulose yield of 64.
View Article and Find Full Text PDFACS Omega
October 2024
Department of Chemical Engineering (ENTEG), University of Groningen, Nijenborgh 4, Groningen, AG 9747, The Netherlands.
5-Hydroxymethylfurfural (HMF) is an attractive building block for biobased chemicals. Typically, ketoses like d-fructose (FRC) are suitable starting materials and give good yields of HMF in a simple aqueous phase process with a Bro̷nsted acid catalyst. With aldoses, such as d-glucose (GLU), much lower yields were reported in the literature.
View Article and Find Full Text PDFJ Bacteriol
October 2024
ISP, Bactéries et Risque Materno-Foetal, Université de Tours, INRAE, Tours, France.
We identified and characterized genomic regions of that are involved in the Leloir and the tagatose-6-phosphate pathways for D-galactose catabolism. The accumulation of mutations in genes coding the Leloir pathway and the absence of these genes in a significant proportion of the strains suggest that this pathway may no longer be necessary for and is heading toward extinction. In contrast, a genomic region containing genes coding for intermediates of the tagatose-6-phosphate pathway, a Gat family PTS transporter, and a DeoR/GlpR family regulator is present in the vast majority of strains.
View Article and Find Full Text PDFInt J Biol Macromol
October 2024
College of Food Science and Technology of Guangdong Ocean University, Zhanjiang 524088, China. Electronic address:
L-arabinose isomerase (L-AI) is a functional enzyme for the isomerizing of D-galactose to produce D-tagatose. In this study, L-AI-C6-encoding gene from the probiotic Lactobacillus fermentum C6 was cloned and expressed in Bacillus subtilis WB600 for investigating enzymatic characteristics and bioconverting D-tagatose by means of whole-cell catalysis. Results showed that the engineered B.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!