Broadband lightweight flat lenses for long-wave infrared imaging.

Proc Natl Acad Sci U S A

Department of Electrical and Computer Engineering, University of Utah, Salt Lake City, UT 84112;

Published: October 2019

We experimentally demonstrate imaging in the long-wave infrared (LWIR) spectral band (8 μm to 12 μm) using a single polymer flat lens based upon multilevel diffractive optics. The device thickness is only 10 μm, and chromatic aberrations are corrected over the entire LWIR band with one surface. Due to the drastic reduction in device thickness, we are able to utilize polymers with absorption in the LWIR, allowing for inexpensive manufacturing via imprint lithography. The weight of our lens is less than 100 times those of comparable refractive lenses. We fabricated and characterized 2 different flat lenses. Even with about 25% absorption losses, experiments show that our flat polymer lenses obtain good imaging with field of view of 35° and angular resolution less than 0.013°. The flat lenses were characterized with 2 different commercial LWIR image sensors. Finally, we show that, by using lossless, higher-refractive-index materials like silicon, focusing efficiencies in excess of 70% can be achieved over the entire LWIR band. Our results firmly establish the potential for lightweight, ultrathin, broadband lenses for high-quality imaging in the LWIR band.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC6815112PMC
http://dx.doi.org/10.1073/pnas.1908447116DOI Listing

Publication Analysis

Top Keywords

flat lenses
12
lwir band
12
long-wave infrared
8
device thickness
8
entire lwir
8
lenses
6
lwir
6
flat
5
broadband lightweight
4
lightweight flat
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!