Statement Of Problem: Finite element analysis (FEA) has been used to evaluate the biomechanical behaviors of dental implants. However, in some FEA studies, the influence of the preload condition has been omitted to simplify the analysis. This might affect the results of biomechanical analysis significantly. The preload condition requires analysis.
Purpose: The purpose of this FEA study was to evaluate and verify the effects of the presence of the preload condition on abutment screws under the occlusal load for external and internal hexagonal connection systems.
Material And Methods: The finite element models consisting of bone blocks, 2 different implant systems (Osstem US and GS system; Osstem Implant Co), and crowns were created. With these components, a total of 6 models with different conditions were constructed for FEA: external hexagonal connection system only with preload (EO), external hexagonal connection system with no preload but occlusal load (EN), external hexagonal system with both preload and occlusal load (EP), internal hexagonal system only with preload (IO), internal hexagonal system with no preload but occlusal load (IN), and internal hexagonal system with both preload and occlusal load (IP). An 11.3-degree oblique load (100 N) to the axis of the implant was applied on the occlusal surface of the crown for the models with occlusal load. A preload of 825 N was applied in the abutment screw of the models EO, EP, IO, and IP. The maximum von Mises stress, maximum principal stress, and maximum displacement of the components of the models were evaluated.
Results: Both external and internal connection systems resulted in higher maximum von Mises stress and maximum principal stress values in the presence of preload in the abutment screw. The internal connection system showed higher displacement values than the external system with or without occlusal loading, and values tended to increase with the preload condition.
Conclusions: The presence of a preload condition significantly affected the biomechanical behaviors of the components of 2 different connection systems. The preload condition should be included in FEA to achieve more realistic results.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.prosdent.2019.04.025 | DOI Listing |
J Dent Sci
January 2025
Department of Conservative Dentistry and Periodontology, University Hospital, LMU Munich, Munich, Germany.
Background/purpose: Although clinical studies have suggested a link between non-axial forces and reduced longevity of cervical restorations, the underlying mechanisms require further numerical investigation. This in-silico study employed a cohesive zone model (CZM) to investigate interfacial damage in a cervical restoration subjected to different load directions.
Materials And Methods: A plane strain model of a maxillary premolar was established, with a wedge-shaped buccal cervical restoration.
J Funct Biomater
January 2025
CIIDIR-Durango, Instituto Politécnico Nacional, Calle Sigma 119, Fraccionamiento 20 de Noviembre II, Durango C.P. 34220, Mexico.
The widely available options of different manufacturers in dental implant systems have complicated the selection criteria process for periodontists, necessitating careful consideration of various factors when selecting suitable solutions for individual patient needs. Optimal implant selection requires careful consideration of the patient-specific factors, implant design, and surgical technique. Understanding the biomechanical behavior of implant-tissue interactions is crucial for achieving successful and long-lasting implant therapy.
View Article and Find Full Text PDFJ Prosthodont Res
January 2025
Advanced Prosthodontics, Oral Health Sciences, Graduate School of Medical and Dental Sciences, Institute of Science Tokyo, Tokyo, Japan.
Purpose: This study was aimed at investigating the thermal stresses in monolithic zirconia crowns (MZC) of various thicknesses and elucidating their thermal behavior under cooling or heating changes in the oral cavity. Additionally, the clinical availability and potential issues of MZC were examined by comparing them with other crown materials.
Methods: Finite element models comprising MZC (0.
Clin Exp Dent Res
February 2025
Dental Research Center, Dentistry Research Institue and Department of Prosthodontics, School of Dentistry, Tehran University of Medical Sciences, Tehran, Iran.
Objectives: To assess the effect of occlusion and implant number/position on stress distribution in Kennedy Class II implant-assisted removable partial denture (IARPD).
Materials And Methods: IARPDs were designed in six models: with one implant (bone level with a platform of 4 mm and length of 10 mm) at the site of (I) canine, (II) between first and second premolars, (III) first molar, (IV) second molar, or two implants at the sites of (V) canine-first molar, and (VI) canine-second molar. A conventional RPD served as control.
J Mech Behav Biomed Mater
January 2025
Department of Engineering and Geology, University "G. D'Annunzio" of Chieti-Pescara, Viale Pindaro, Pescara, 65127, Italy. Electronic address:
This study numerically investigates the impact of different loading modes on the biomechanical response of an osseointegrated dental implant. While finite element modeling is commonly employed to investigate the mechanical behavior of dental implants, several models lack physiological accuracy in their loading conditions, omitting occlusal contact points that influence stress distribution in periimplant bone. Using 3D finite element modeling and analysis, stress distributions at the bone-implant interface are evaluated under both physiological loading, incorporating natural occlusal contact points, and non-physiological loading conditions, with a focus on load transmission mechanisms and the potential risk of bone overloading.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!