We surveyed the deposition of drill cuttings on the seafloor along a transect at eight drilling locations in the south-western Barents Sea and Norwegian Sea, comparing traditional visual surveying methods and underwater hyperspectral imagery (UHI). The locations range from newly-drilled to around 30 years post-drilling. The visual assessments detected deposited drill cuttings to extend to around 150-200 m from the drilling location at recently drilled sites and generally less than 50 m at older locations. Quantitative UHI analyses of relative change in the spectral signature of the sediments with increasing distance from the drilling location mostly showed a change-over to conditions resembling undisturbed sediments at approximately similar distances as the visual assessments. Biological faunal community analyses also reflected these trends. The UHI-based detection of drill cuttings thus in general supported the results of visual assessments and potentially could be further developed as a method for automated surveying of drilling sites.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.marpolbul.2019.04.031DOI Listing

Publication Analysis

Top Keywords

drill cuttings
16
visual assessments
12
deposited drill
8
underwater hyperspectral
8
hyperspectral imagery
8
drilling location
8
detection deposited
4
drill
4
cuttings
4
cuttings sea
4

Similar Publications

In situ remediation of oil-contaminated soils by ozonation: Experimental study and numerical modeling.

Chemosphere

January 2025

Institute of Chemical Engineering Sciences, Foundation for Research and Technology Hellas (FORTH/ICE-HT), 26504, Patras, Greece. Electronic address:

The goal of the present work is to quantify the performance of ozonation as a method for the in situ remediation of soils polluted at varying degree with different types of hydrocarbons, and assess its applicability, in terms of remediation efficiency, cost factors, and environmental impacts. Ozonation tests are conducted on dry soil beds, for three specific cases: sandy soil contaminated with low, moderate and high concentration of a non-aqueous phase liquid (NAPL) consisting of equal concentrations of n-decane, n-dodecane, and n-hexadecane; sandy soil polluted with diesel fuel; oil-drilling cuttings (ODC). The transient changes of the concentration of the total organic carbon (TOC), total petroleum hydrocarbons (TPH), polycyclic aromatic hydrocarbons (PAHs), and soluble chemical oxygen demand (SCOD) in soil and carbon dioxide (CO), carbon monoxide (CO), volatile organic compounds (VOCs), and ozone (O) in exhaust gases are recorded.

View Article and Find Full Text PDF

The electrochemical cutting technique, utilizing electrolyte flushing through micro-hole arrays in the radial direction of a tube electrode, offers the potential for cost-effective and high-surface-integrity machining of large-thickness, straight-surface structures of difficult-to-cut materials. However, fabricating the array of jet micro-holes on the tube electrode sidewall remains a significant challenge, limiting the broader application of this technology. To enhance the efficiency and quality of machining these jet micro-holes on the tube sidewall, a helical electrode electrochemical drilling method assisted by anode vibration has been proposed.

View Article and Find Full Text PDF

Although oil and gas (O&G) derived produced waters and drill cuttings are known to contain enhanced levels of naturally occurring radium-228 (Ra) and radium-226 (Ra), most relevant ecological impact assessments have excluded radiological hazards and focus on other important contaminants, such as hydrocarbons and metals. Also, due to restricted access to the delimiting safety zone around operational O&G platforms, the few previous radioecological risk assessment studies have been conducted using seawater samples collected far from the main discharge point and applying default dilution and transfer factors to estimate concentrations of contaminants in biota. In this case study, sediment cores were collected close to a former O&G platform, Northwest Hutton (NWH), that used to be in the UK North Sea (61.

View Article and Find Full Text PDF

Geothermal energy, oil industry, and underground gas storage technology require deep drilling. Although oil-based drilling fluids have been widely used, they cause environmental issues. Environmentally friendly Aphronic fluid has emerged as an alternative to oil-based drilling fluid.

View Article and Find Full Text PDF

In order to solve the problem of drilling deflection, the method of cutting drilling by layers is proposed. The mathematical model of the force of the layered cutting bit was established, and the influencing factors of bit deflection were obtained. The stress equation of the cutting bit is constructed, and the ABAQUS numerical model is established.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!