Microplastics at the strandlines of Slovenian beaches.

Mar Pollut Bull

Alfred Wegener Institute, Helmholtz Centre for Polar and Marine Research, Am Handelshafen 12, 27570 Bremerhaven, Germany.

Published: August 2019

Sediment samples were randomly taken in March and August 2017 at the strandlines of nine locations along the coast of Slovenia (Adriatic Sea, Mediterranean). Microparticles were isolated by density separation in saturated aqueous NaCl-solutions and analysed by infrared spectroscopy (ATR-FTIR). 11.3% of these particles were unambiguously confirmed as microplastics. Another 8.2% showed plastic characteristics but failed ATR-FTIR validation. 4.3% were naturally organic. The rest was unidentified material (76.2%). The average microplastic densities were 0.5 ± 0.5 MP kg in March and 1.0 ± 0.8 MP kg in August. The microplastics comprised fragments, fibres, films, and foams. The characteristics of the microplastics suggest origin from single-used plastic products and from aquaculture. Compared to other studies and sites, the microplastic pollution of the Slovenian coast appeared low. The validity of the results is discussed with respect to microplastic distribution and patchiness, sampling strategies, methodology, and scientific claims.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.marpolbul.2019.05.054DOI Listing

Publication Analysis

Top Keywords

microplastics
4
microplastics strandlines
4
strandlines slovenian
4
slovenian beaches
4
beaches sediment
4
sediment samples
4
samples randomly
4
randomly march
4
march august
4
august 2017
4

Similar Publications

New Perspectives on Canned Fish Quality and Safety on the Road to Sustainability.

Foods

January 2025

Interdisciplinary Centre of Marine and Environmental Research (CIIMAR/CIIMAR-LA), University of Porto, Terminal de Cruzeiros do Porto de Leixões, 4450-208 Matosinhos, Portugal.

Canning extends the shelf life of seafood products while preserving their quality. It is increasingly considered a more sustainable food processing method due to the primary fishing methods used for key species and the lower energy costs compared to the production of fresh and frozen fish. However, canning can change key components, allow some contaminants to persist, and generate undesirable compounds.

View Article and Find Full Text PDF

In recent years, awareness regarding micro-nanoplastics' (MNPs) potential effects on human health has progressively increased. Despite a large body of evidence regarding the origin and distribution of MNPs in the environment, their impact on human health remains to be determined. In this context, there is a major need to address their potential carcinogenic risks, since MNPs could hypothetically mediate direct and indirect carcinogenic effects, the latter mediated by particle-linked chemical carcinogens.

View Article and Find Full Text PDF

The rising concentration of microplastics (MPs) in aquatic environments poses increasing ecological risks, yet their impacts on biological communities remain largely unrevealed. This study investigated how aminopolystyrene microplastics (PS-NH) affect physiology and gene expression using the freshwater alga sp. as the test species.

View Article and Find Full Text PDF

Recent Progress in Polyolefin Plastic: Polyethylene and Polypropylene Transformation and Depolymerization Techniques.

Molecules

December 2024

Programa de Pós-Graduação em Ciências Aplicadas a Produtos para a Saúde, Laboratório de Inovação em Química e Tecnologia Farmacêutica, Faculdade de Farmácia, Universidade Federal Fluminense, Rua Doutor Mario Vianna, 523, Santa Rosa, Niterói 24241-000, RJ, Brazil.

This paper highlights the complexity and urgency of addressing plastic pollution, drawing attention to the environmental challenges posed by improperly discarded plastics. Petroleum-based plastic polymers, with their remarkable range of physical properties, have revolutionized industries worldwide. Their versatility-from flexible to rigid and hydrophilic to hydrophobic-has fueled an ever-growing demand.

View Article and Find Full Text PDF

As the COVID-19 pandemic began in 2020, plastic usage spiked, and microplastic (MP) generation has increased dramatically. It is documented that MP can transfer from the source to the ocean environment where they accumulate as the destination. Therefore, it is essential to understand their transferring pathways and effective environmental factors to determine the distribution of MPs in the marine environment.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!