A 120-year sedimentary record and its environmental implications, in a dated marine sediment core from Daya Bay in the northeastern South China Sea.

Mar Pollut Bull

South China Sea Environment Monitoring Center, State Oceanic Administration (SOA), Guangzhou 510300, Guangdong, PR China; South China Sea Testing and Appraisal Center, State Oceanic Administration (SOA), Guangzhou 510300, Guangdong, PR China.

Published: August 2019

In a Daya Bay 120-year dated sediment core(1892-2010), analyses were conducted of grain-size, water content, TOC, TIC, TC, loss on ignition, TN, BSi and TP, to reconstruct the anthropogenic activity history. The entire core was divided into four periods. Multi-parametric measurements, their ratios and interrelations are seen to clearly reflect the development of agriculture, aquaculture, industry and social economy surrounding Daya Bay. The trends of TOC, TOM and BSi after 1990 may be due to mass input of nutritious matter from aquaculture and industry, whereas the trends of BSi, TOC and TOM between 1960 and 1990 were owing to aquaculture and agriculture. Two peaks of BSi, TOC and TOM in 1994 and 2002 imply that the mass input of cooling water from nuclear power plants may be a significant contributor to ecological environment changes. Finally, some proposals were put forward for the healthy and sustainable development of Daya Bay.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.marpolbul.2019.05.004DOI Listing

Publication Analysis

Top Keywords

daya bay
16
toc tom
12
aquaculture industry
8
mass input
8
bsi toc
8
120-year sedimentary
4
sedimentary record
4
record environmental
4
environmental implications
4
implications dated
4

Similar Publications

An Over 30-Year Analysis of Heavy Metal Deposition in Daya Bay Sediments.

Bull Environ Contam Toxicol

January 2025

College of Marine Science, South China Agricultural University, Guangzhou, 510642, China.

Sediment cores were collected from the nearshore to bay mouth region in Daya Bay, aiming to describe the historical patterns of heavy metals deposition in the sediment. During the last 40 years, the heavy metals exhibited significant different deposition behaviors in the sediment, in which As, Zn, Cr were more enriched and contributed to metals pollution in this area. Moreover, heavy metals deposition exhibited completely opposite behaviors from the nearshore to bay mouth region.

View Article and Find Full Text PDF

Heat-tolerant subtropical Porites lutea may be better adapted to future climate change than tropical one in the South China Sea.

Sci Total Environ

January 2025

Guangxi Laboratory on the Study of Coral Reefs in the South China Sea, Coral Reef Research Center of China, School of Marine Sciences, Guangxi University, Nanning 530004, China; Southern Marine Science and Engineering Guangdong Laboratory (Guangzhou), Guangzhou 511458, China. Electronic address:

Coral reefs are degrading at an accelerating rate owing to climate change. Understanding the heat stress tolerance of corals is vital for their sustainability. However, this tolerance varies substantially geographically, and information regarding coral responses across latitudes is lacking.

View Article and Find Full Text PDF

Seasonal and spatial variability of dissolved organic nitrogen concentration and composition in Daya Bay, China.

Mar Environ Res

December 2024

State Key Laboratory of Isotope Geochemistry, Guangzhou Institute of Geochemistry, Chinese Academy of Sciences, Guangzhou, 510640, China.

Dissolved organic nitrogen (DON) has recently been recognized as an important nitrogen source for marine phytoplankton. However, the composition, sources, and biogeochemical cycling of DON in coastal ecosystems remain poorly understood. This study investigates the spatial distribution and seasonal variability of DON in Daya Bay, a subtropical semi-enclosed bay in the northern South China Sea.

View Article and Find Full Text PDF

Accurate assessments of the impact of thermal discharge from power plants on the marine ecosystem remains a significant challenge. This study provided high-resolution observation during two high-productivity seasons to investigated the biogeochemical impacts of thermal discharge in Dapeng Cove, Daya Bay. The surface footprint of the thermal plume was hardly discernible during summer, likely due to intense solar heating of the water surface, but rapid biogeochemical decomposition of organisms still occurs.

View Article and Find Full Text PDF

Taxonomic Diversity, Predicted Metabolic Pathway, and Interaction Pattern of Bacterial Community in Sea Urchin .

Microorganisms

October 2024

University Joint Laboratory of Guangdong Province, Hong Kong and Macao Region on Marine Bioresource Conservation and Exploitation, College of Marine Sciences, South China Agricultural University, Guangzhou 510642, China.

Bacterial assemblages associated with sea urchin are critical to their physiology and ecology within marine ecosystems. In this study, we characterized the bacterial communities in wild sea urchin captured in Daya Bay, South China Sea. A total of 363 amplicon sequence variants belonging to nine phyla and 141 genera were classified from intestine, body surface, and surrounding seawater samples.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!