Computational models of motivated frontal function.

Handb Clin Neurol

Department of Psychology and Neuroscience, University of Colorado Boulder, Boulder, CO, United States.

Published: February 2020

Computational models of frontal function have made important contributions to understanding how the frontal lobes support a wide range of important functions, in their interactions with other brain areas including, critically, the basal ganglia (BG). We focus here on the specific case of how different frontal areas support goal-directed, motivated decision-making, by representing three essential types of information: possible plans of action (in more dorsal and lateral frontal areas), affectively significant outcomes of those action plans (in ventral, medial frontal areas including the orbital frontal cortex), and the overall utility of a given plan compared to other possible courses of action (in anterior cingulate cortex). Computational models of goal-directed action selection at multiple different levels of analysis provide insight into the nature of learning and processing in these areas and the relative contributions of the frontal cortex versus the BG. The most common neurologic disorders implicate these areas, and understanding their precise function and modes of dysfunction can contribute to the new field of computational psychiatry, within the broader field of computational neuroscience.

Download full-text PDF

Source
http://dx.doi.org/10.1016/B978-0-12-804281-6.00017-3DOI Listing

Publication Analysis

Top Keywords

computational models
12
frontal areas
12
frontal
8
frontal function
8
areas including
8
frontal cortex
8
field computational
8
areas
6
computational
5
models motivated
4

Similar Publications

Recognizing drivers' sleep onset by detecting slow eye movement using a parallel multimodal one-dimensional convolutional neural network.

Comput Methods Biomech Biomed Engin

January 2025

School of Computer Science and Artificial Intelligence, Aliyun School of Big Data, Changzhou University, Changzhou, P.R. China.

Slow eye movements (SEMs) are a reliable physiological marker of drivers' sleep onset, often accompanied by EEG alpha wave attenuation. A parallel multimodal 1D convolutional neural network (PM-1D-CNN) model is proposed to classify SEMs. The model uses two parallel 1D-CNN blocks to extract features from EOG and EEG signals, which are then fused and fed into fully connected layers for classification.

View Article and Find Full Text PDF

Introduction: Recovery community centers (RCCs) offer various support services to people in addiction recovery, such as hosting mutual help meetings and sober social activities and providing employment support and recovery coaching. To date, very little is known about RCCs and their relationship with recovery outcomes, as well as how RCCs may vary in helpfulness from visit to visit. This study used a daily diary approach to assess the intraindividual variation of daily RCC helpfulness, and whether RCC helpfulness predicted the holistic recovery indices of daily meaningfulness and recovery identity.

View Article and Find Full Text PDF

Cricket song recognition is thought to evolve through modifications of a shared neural network. However, the species has an unusual recognition pattern that challenges this view: females respond to both normal male song pulse periods and periods twice as long. Of the three minimal models tested, only a single-neuron model with an oscillating membrane could explain this unusual behavior.

View Article and Find Full Text PDF

Background And Aims: Patient-reported outcomes (PROs) are vital in assessing disease activity and treatment outcomes in inflammatory bowel disease (IBD). However, manual extraction of these PROs from the free-text of clinical notes is burdensome. We aimed to improve data curation from free-text information in the electronic health record, making it more available for research and quality improvement.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!