Background: Acinetobacter baumannii is an increasingly worrying organism in the healthcare setting, due to its multidrug resistance and persistence. Prolonged hospitalisation, immunocompromised patients and excessive antibiotic exposure all contribute to increasing the risk of A. baumannii infections, which makes cancer patients a significant risk group. This study aims to investigate the dissemination of A. baumannii at the National Cancer Institute (NCI) in Cairo - Egypt.

Methods: All bacterial isolates were typed using Multi-locus Sequence Typing (MLST) to characterise the epidemiology of isolates. The intrinsic OXA-51-like, and the acquired carbapanemases OXA-23, - 24/40, - 58, NDM, IMP, and VIM were also amplified and sequenced to genetically identify mechanisms of carbapenem resistance.

Results: MLST results show a high degree of multi-clonal dissemination, with 18 different Sequence Types (STs) identified, including 5 novel. The majority of isolates belonged to International Clone (IC) 2, and carbapenem resistance was detected in 93% of isolates and mediated by bla, bla, bla and bla. We also report the presence of a resistant ST732 (OXA-378) which has been previously identified in migratory birds CONCLUSIONS: Multiple highly resistant clones were identified in a Cancer hospital in Cairo. It is vital that clinicians and healthcare workers are aware of the population of A. baumannii present in order to have appropriate treatment and infection control practices.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC6781328PMC
http://dx.doi.org/10.1186/s12879-019-4433-1DOI Listing

Publication Analysis

Top Keywords

bla bla
12
sequence types
8
acinetobacter baumannii
8
baumannii
5
multiple sequence
4
types responsible
4
responsible healthcare-associated
4
healthcare-associated acinetobacter
4
baumannii dissemination
4
dissemination single
4

Similar Publications

Genes encoding OXA-48-like carbapenem-hydrolyzing enzymes are often located on plasmids and are abundant among carbapenemase-producing (CPE) worldwide. After a large plasmid-mediated outbreak in 2011, routine screening of patients at risk of CPE carriage on admission and every 7 days during hospitalization was implemented in a large hospital in the Netherlands. The objective of this study was to investigate the dynamics of the hospitals' 2011 outbreak-associated plasmid among CPE collected from 2011 to 2021.

View Article and Find Full Text PDF

Emerging carbapenem-resistant in a tertiary care hospital in Lima, Peru.

Microbiol Spectr

January 2025

Instituto de Medicina Tropical Alexander von Humboldt, Universidad Peruana Cayetano Heredia, Lima, Peru.

The emergence of carbapenem-resistant (CRKP) poses a significant public health threat, particularly in low- and middle-income countries (LMICs) with limited surveillance and treatment options. This study examines the genetic diversity, resistance patterns, and transmission dynamics of 66 CRKP isolates recovered over 5 years (2015-2019) after the first case of CRKP was identified at a tertiary care hospital in Lima, Peru. Our findings reveal a shift from to as the dominant carbapenemase gene after 2017.

View Article and Find Full Text PDF

The surveillance of mobile genetic elements facilitating the spread of antimicrobial resistance genes has been challenging. Here, we tracked both clonal and plasmid transmission in colistin- and carbapenem-resistant using short- and long-read sequencing technologies. We observed three clonal transmissions, all containing Incompatibility group (Inc) L plasmids and New Delhi metallo-beta-lactamase , although not co-located on the same plasmid.

View Article and Find Full Text PDF

Unlabelled: Piperacillin-tazobactam (TZP) is a commonly used broad-spectrum agent. OXA-1 β-lactamases drive global Enterobacterales TZP resistance and raise MICs to the clinical breakpoints (8/4-16/4 µg/mL), making susceptibility testing challenging. Two TZP disks are used globally.

View Article and Find Full Text PDF

In Aotearoa New Zealand, urinary tract infections in humans are commonly caused by extended-spectrum beta-lactamase (ESBL)-producing . This group of antimicrobial-resistant bacteria are often multidrug resistant. However, there is limited information on ESBL-producing found in the environment and their link with human clinical isolates.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!