A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

Thermally Assisted Acoustofluidic Separation Based on Membrane Protein Content. | LitMetric

Thermally Assisted Acoustofluidic Separation Based on Membrane Protein Content.

Anal Chem

Department of Mechanical and Materials Engineering , Florida International University, Miami , Florida 33174 , United States.

Published: November 2019

The over- and under-expression of certain proteins in extracellular vesicles has been observed in many physiological and pathological conditions; however, a simple method to sort vesicles based on contrast in protein content is yet to be developed. We herein present a nonaffinity-based method for rapid and inexpensive isolation of lipid vesicles based on their membrane protein content. Based on a composition-specific thermophysical property change of vesicles at different protein contents, an acoustic property change that enabled an acoustophoretic separation was observed. This change was demonstrated in a thermally modulated acoustofluidic device in the form of a shift in vesicle migration from the nodal plane to antinodal plane at a specific temperature known as the acoustic contrast temperature (). Using phosphatidylcholine vesicles containing the membrane proteins gramicidin D, alamethicin, and melittin at molar contents ranging from 0.001% to 10%, we observed that increasing the membrane protein content brought about conformational changes in the membrane which afforded the vesicles distinctive acoustic properties. Then, by establishing an acoustic contrast temperature window, vesicles with the same protein but different molar content were successfully separated. The efficiency of the separation was studied for various vesicle mixtures and a separation efficiency as high as 97% was accomplished. In order to confirm the technique's applicability for biological samples, sheep red blood cells with various melittin peptide contents similarly demonstrated the depressing effects of melittin on membrane bending modulus and depressed the of the cells. This method holds promise for a myriad of applications in the biomedical field, especially in bioanalytical research.

Download full-text PDF

Source
http://dx.doi.org/10.1021/acs.analchem.9b03485DOI Listing

Publication Analysis

Top Keywords

protein content
16
membrane protein
12
based membrane
8
vesicles based
8
property change
8
vesicles protein
8
acoustic contrast
8
contrast temperature
8
vesicles
7
membrane
6

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!