This study investigated the effects and mechanisms of 1,2-bis[(3-methoxyphenyl)methyl]ethane-1,2-dicarboxylic acid (S4), a sesamin derivative, on anti-inflammation and antiphotoaging in vitro and in vivo. Human skin fibroblasts were treated with S4 and did not show cytotoxicity under concentrations of 5-50 µM. In addition, S4 also reduced ultraviolet (UV)B-induced intracellular reactive oxygen species (ROS) production. Additionally, S4 inhibited UVB-induced phosphorylation of mitogen-activated protein (MAP) kinases, activator protein-1 (AP-1), and matrix metalloproteinases (MMPs) overexpression. Furthermore, S4 also inhibited UVB-induced Smad7 protein expression and elevated total collagen content in human dermal fibroblasts. For anti-inflammatory activity, S4 inhibited UVB-induced nitric oxide synthase (i-NOS) and cyclooxygenase (COX)-2 protein expression and inhibited nuclear factor-kappaB (NF-ĸB) translocation into the nucleus. S4 ameliorated UVB-induced erythema and wrinkle formation in hairless mice. On histological observation, S4 also ameliorated UVB-induced epidermal hyperplasia and collagen degradation. S4 reduced UVB-induced MMP-1, interleukin (IL)-6, and NF-ĸB expression in the mouse skin. The results indicated that S4 had antiphotoaging and anti-inflammatory activities, protecting skin from premature aging.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC6826437PMC
http://dx.doi.org/10.3390/antiox8100452DOI Listing

Publication Analysis

Top Keywords

inhibited uvb-induced
12
12-bis[3-methoxyphenylmethyl]ethane-12-dicarboxylic acid
8
uvb-induced
8
vitro vivo
8
protein expression
8
ameliorated uvb-induced
8
acid reduces
4
reduces uvb-induced
4
uvb-induced photodamage
4
photodamage vitro
4

Similar Publications

Background: It is well-known that ultraviolet B (UVB) causes cataracts by inducing pyroptosis and the production of reactive oxygen species (ROS) in human lens epithelial cells (HLECs). The transcription factor E2F1 (E2F1) serves as a positive regulator of disrupted pathways involved in histone modification and cell cycle regulation. However, its function in UVB-treated HLECs remains unknown.

View Article and Find Full Text PDF

This study aimed to assess how ursolic acid (UA) can protect human skin keratinocytes from damage caused by ultraviolet B (UVB) radiation. Utilizing an omics-based approach, we characterized the features of photodamage and investigated the potential of UA to reverse HaCaT cell subpopulation injury caused by UVB radiation. The most significant changes in metabolite levels after UA treatment were in pathways associated with phosphatidylcholine biosynthesis, arginine and proline metabolism.

View Article and Find Full Text PDF

is a red macroalga known for its bioactive compounds with antioxidant, anti-inflammatory, and skin-regenerative properties. The study aimed to examine their effects on UV protection, collagen synthesis, fibroblast proliferation, and pigmentation modulation. Bioactive compounds were extracted using two solvents, producing ethanol extract (FE) and alkaline extracts (AE).

View Article and Find Full Text PDF

Background: Photoaging, induced by chronic ultraviolet B (UVB) exposure, results in the degradation of extracellular matrix (ECM) components, leading to skin roughness, wrinkle formation, and reduced elasticity. Recent studies have explored probiotics as potential inhibitors of extrinsic aging, primarily through mechanisms that protect the skin barrier and reduce collagen breakdown.

Methods: This study investigates the anti-photoaging effects of MG5368 ( MG5368) and MG989 ( MG989) in UVB-exposed keratinocytes and an SKH-1 hairless mice model.

View Article and Find Full Text PDF

Neuropsin, TRPV4 and intracellular calcium mediate intrinsic photosensitivity in corneal epithelial cells.

Ocul Surf

December 2024

Department of Ophthalmology & Visual Sciences, University of Utah School of Medicine, Salt Lake City, UT, USA; Interdepartmental Program in Neuroscience, University of Utah, USA; Department of Bioengineering, University of Utah, Salt Lake City, UT, USA; Department of Neurobiology, University of Utah, Salt Lake City, UT, USA. Electronic address:

Purpose: To investigate intrinsic phototransduction in the corneal epithelium and its role in intracellular and inflammatory signaling.

Methods: Optical imaging in isolated corneal epithelial cells (CECs) and debrided epithelia was combined with molecular, biochemical, pharmacological assays and gene deletion studies to track UVB-induced calcium signaling and release of cytokines, chemokines and matrix remodeling enzymes. Results from wild type mouse CECs were compared to data obtained from Opn5 and Trpv4 cells.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!