The single-lap joint of fiber-reinforced composites is a common structure in the field of structure repair, which has excellent mechanical properties. To study and monitor its quasi-static response behavior under external load, two methodologies called effective structural mechanical impedance (ESMI) and reduced-ESMI (R-ESMI) are presented in this article. A two-dimensional electromechanical impedance (EMI) model for a surface-bonded square piezoelectric transducer (PZT) is adopted to extract more sensitive signatures from the measured raw signatures. There are two major advantages of the monitoring scheme based on ESMI and R-ESMI signatures: (1) excellent monitoring results with less signatures to process, (2) the ability to monitor the quasi-static behavior of a single-lap joint with previously ignored susceptance signatures. Combining the extracted ESMI signatures with the index of root-mean-square deviation, the quasi-static behavior of single-lap joints can be effectively quantified. To test the effectiveness of ESMI methodology, verifying experiments were conducted. The experimental results convincingly demonstrated that the presented ESMI and R-ESMI methodologies have good feasibility in monitoring the quasi-static behavior of a fiber-reinforced composite single-lap joint. The proposed method has potential application in the field of structural health monitoring (SHM).

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC6804236PMC
http://dx.doi.org/10.3390/ma12193241DOI Listing

Publication Analysis

Top Keywords

single-lap joint
16
quasi-static behavior
12
fiber-reinforced composite
8
composite single-lap
8
electromechanical impedance
8
piezoelectric transducer
8
monitor quasi-static
8
esmi r-esmi
8
behavior single-lap
8
signatures
6

Similar Publications

Microwave welding with SiCNW/PMMA nanocomposite thin films: Enhanced joint strength and performance.

Nanotechnology

January 2025

Universiti Teknologi PETRONAS, Centre of Innovative Nanostructures and Nanodevices (COINN), Universiti Teknologi PETRONAS, 32610 Seri Iskandar, Perak Darul Ridzuan, MALAYSIA, Seri Iskandar, Perak, 32610, MALAYSIA.

Most previously reported susceptors for microwave welding are in powder form. In this study, a thin-film susceptor was employed due to its uniform heating rate and ease of handling. Silicon carbide nanowhisker (SiCNW) were incorporated into a poly(methyl methacrylate) (PMMA) matrix to create a nanocomposite thin film, which served as the susceptor.

View Article and Find Full Text PDF

Epoxy resins have exhibited exceptional performance in engineering applications, particularly as a replacement for traditional mechanical joints in adhesive bonding. This study evaluates the suitability of two innovative adhesives, SikaPower-1511 and SikaPower-1548, in various graded configurations. The thermal curing behavior of the adhesives was analyzed using differential scanning calorimetry (DSC) and Fourier transform infrared spectroscopy (FTIR).

View Article and Find Full Text PDF

The structural adhesive bonding of aluminum is widely used in the aircraft and automotive industries. The surface preparation of aluminum prior to adhesive bonding plays a significant role in improving the bonding strength. Surface cleanliness, surface roughness, and surface chemistry can be controlled, primarily, by proper surface treatment methods.

View Article and Find Full Text PDF

This paper had conducted tensile shear tests on single-lap joints (SLJs)bonded structures of carbon fiber reinforced resin matrix (CFRP) composite laminates with different overlap lengths, overlap widths, overlap model, adherend material, and adhesive layer thicknesses under two environments: room temperature dry state (RTD) and elevated temperature wet state (ETW). The failure modes were observed, and load-displacement curves were obtained. The microscopic morphology of the fracture surface was observed by scanning electron microscope (SEM).

View Article and Find Full Text PDF

Ultrasonic welding of fibre-reinforced thermoplastics is a joining technology with high potential for short welding times and low energy consumption. While the majority of the current studies on continuous ultrasonic welding have so far focused on woven reinforcements, unidirectional materials are preferred for highly loaded aerospace components due to their better mechanical performance. Therefore, this paper investigates the influence and interdependence of the welding speed, amplitude, and energy director thickness on the weld quality of adherends made of unidirectional composites.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!