Two new mutations in dnaJ suppress DNA damage hypersensitivity and capsule overproduction phenotypes of Δlon mutant of Escherichia coli by modulating the expression of clpYQ (hslUV) and rcsA genes.

Gene

Department of Molecular Biology, School of Biological Sciences, Centre for Advanced Studies in Functional and Organismal Genomics, Madurai Kamaraj University, Palkalai Nagar, Madurai 625021, Tamil Nadu, India. Electronic address:

Published: February 2020

Lon is a major ATP-dependent protease of E. coli involved in degradation of abnormal misfolded proteins and specific regulatory proteins. Absence of Lon in E. coli results in sensitivity to DNA damaging agents and over-production of capsular polysaccharide due to accumulation of Lon substrates, SulA (cell division inhibitor induced upon DNA damage) and RcsA (activator of cps genes), respectively. In a previous study, we identified that a G232D mutation, termed faa (for function affecting alternative-lon-protease), in the E. coli co-chaperone DnaJ, results in suppression of lon mutant phenotypes. Additionally, inactivation of the trans-translation system was found to have an additive effect on faa activity. In the present work, we employed random mutagenesis approach to isolate novel mutations in dnaJ which could phenotypically compensate the absence of Lon. Using a lacZ-based Lon reporter strain, we were able to isolate two new mutations in dnaJ as lon suppressors. These mutations, namely, flm-1 (H33Y) and flm-2 (P34S), affected the highly conserved HPD motif of DnaJ. Both mutations suppressed lon phenotypes to variable extent and the suppression was also differentially modulated by mutations in ssrA that affect trans-translation. We show that ClpYQ protease up-regulated in both mutants should degrade SulA, since inactivation of clpQ abolished the resistance to DNA damaging agents. On the other hand, we found suppression of capsule overproduction phenotype was independent of ClpYQ in both mutants but resulted due to down-regulation of rcsA in flm-1. Thus, our findings highlight the intricate redundancy of cellular proteolysis networks in bacteria which can compensate the absence of Lon via distinct mechanisms.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.gene.2019.144135DOI Listing

Publication Analysis

Top Keywords

mutations dnaj
12
absence lon
12
lon
9
dna damage
8
capsule overproduction
8
dna damaging
8
damaging agents
8
compensate absence
8
mutations
6
dnaj suppress
4

Similar Publications

DNAJB4/HLJ1 deficiency sensitizes diethylnitrosamine-induced hepatocarcinogenesis with peritumoral STAT3 activation.

Cell Biol Toxicol

December 2024

Department of Clinical Laboratory Sciences and Medical Biotechnology, College of Medicine, National Taiwan University, Taipei, Taiwan.

Environmental chemicals and toxins are known to impact human health and contribute to cancer developments. Among these, genotoxins induce genetic mutations critical for cancer initiation. In the liver, proliferation serves not only as a compensatory mechanism for tissue repair but also as a potential risk factor for the progression of premalignant lesions.

View Article and Find Full Text PDF

Escherichia coli depletion of chaperone trigger factor and DnaK/J were not viable at 37°C, but viable below 30°C. Among the engineered E. coli depleted of trigger factor and DnaK/J, one strain Z625, exhibited survival at 37°C, while another strain Z629 only survived below 30°C.

View Article and Find Full Text PDF

Frequent (>70%) TP53 mutations often promote its protein stabilization, driving esophageal adenocarcinoma (EAC) development linked to poor survival and therapy resistance. We previously reported that during Barrett's esophagus progression to EAC, an isoform switch occurs in the E3 ubiquitin ligase RNF128 (aka GRAIL-gene related to anergy in lymphocytes), enriching isoform 1 (hereby GRAIL1) and stabilizing the mutant p53 protein. Consequently, GRAIL1 knockdown degrades mutant p53.

View Article and Find Full Text PDF

Evaluating the ability of different chaperones in improving soluble expression of a triple-mutated human interferon gamma in Escherichia coli.

J Biosci Bioeng

September 2024

Division of Clinical Immunology, Department of Medical Technology, Faculty of Associated Medical Sciences, Chiang Mai University, Chiang Mai, Thailand; Center of Biomolecular Therapy and Diagnostic, Faculty of Associated Medical Sciences, Chiang Mai University, Chiang Mai, Thailand; Center of Innovative Immunodiagnostic Development, Department of Medical Technology, Faculty of Associated Medical Sciences, Chiang Mai University, Chiang Mai, Thailand. Electronic address:

Human interferon gamma (hIFN-γ) plays a pivotal role as a soluble cytokine with diverse functions in both innate and adaptive immunity. In a previous investigation, we pinpointed three critical amino acid residues, i.e.

View Article and Find Full Text PDF

Growth fitness, virulence, and heat tolerance of Salmonella Typhimurium variants resistant to food preservation methods.

Int J Food Microbiol

September 2024

Departamento de Producción Animal y Ciencia de los Alimentos, Facultad de Veterinaria, Instituto Agroalimentario de Aragón-IA2 (Universidad de Zaragoza-CITA), Zaragoza, Spain. Electronic address:

To study potential ramifications of antimicrobial resistance, we carried out adaptive laboratory evolution assays (ALE) to isolate three resistant variants (RVs) of Salmonella enterica Typhimurium, employing three different types of food preservation methods: 1) an emergent technology, plasma-activated water (PAW), leading to variant RV-PAW; a traditional method, heat, leading to variant RV-HT, and a natural antimicrobial compound, carvacrol, leading to variant RV-CAR. The variant resistant to plasma-activated water, RV-PAW, had mutations in rpoA and rpoD; it showed increased tolerance to heat in orange juice but ultimately did not pose a significant threat, as it exhibited a fitness cost at refrigeration temperature (8 °C), whereas its virulence against Caenorhabditis elegans decreased. The variant resistant to heat, RV-HT, had mutations in flhC, dnaJ: it exhibited a fitness cost at high growth temperatures (43 °C) and induced morphofunctional alterations in C.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!