Structural changes of glycans are observed in different (patho)physiological conditions. Human placental membrane (glyco)proteins were isolated from the first and third trimester placentas of mothers at different ages. By using lectin microarray, we demonstrated that the placental membrane N-glycome contains several N-glycan groups: high mannose, asialylated and sialylated biantennary moieties, bisected, core fucosylated, fucosylated at other positions (bearing terminal and/or antennary Fuc), α2-6 and α2-3 sialylated structures. Employing MALDI-TOF MS enabled identification of over sixty different N-glycan structures in all samples, with 17 moieties exceeding the relative abundance of 2%. The major MS peaks originated from: 1) biantennary complex type N-glycan with a bisecting GlcNAc residue and 2) a core Fuc paucimannosidic and high mannose type structures M3-M9. Age of mothers and the stage of placental development affected N-glycome. The work presented in this article is the first comprehensive mass spectrometric study of the N-glycome of human placental membrane proteins. Our results may be seen as the baseline which can serve for future MALDI MS profiling of the placental membrane N-glycome in different pathophysiological conditions.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.mad.2019.111151 | DOI Listing |
Hum Cell
January 2025
Department of Metabolism and Endocrinology, The Second Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang, China.
The escalating diabetes prevalence has heightened interest in innovative therapeutic strategies for this disease and its complications. Human amniotic epithelial stem cells (HAESCs), originate from the innermost layer of the placenta closest to the fetus and express stem cell markers in the amniotic membrane's umbilical cord attachment area, which have garnered significant attention. This article critically examines emerging research advancements and potential application values of hAESCs in treating diabetes and its complications.
View Article and Find Full Text PDFJ Nutr
December 2024
Division of Reproductive Sciences, Department of Obstetrics & Gynecology, University of Colorado Anschutz Medical Campus, Aurora, CO, USA; Section of Neonatology, Department of Pediatrics, University of Colorado Anschutz Medical Campus, Aurora, CO, USA. Electronic address:
Pregnancies complicated by maternal obesity are characterized by metabolic differences affecting placental nutrient transport and fetal development. Docosahexaenoic acid (DHA) is critical for fetal brain development and is primarily incorporated into phosphatidylcholine (PC). Recent evidence suggests choline may enhance PC-DHA synthesis; however, data on the impact of maternal plasma choline on placental phospholipid DHA content in females with obesity are limited.
View Article and Find Full Text PDFJ Pharmacopuncture
December 2024
School of Nursing and Midwifery, Mashhad University of Medical Sciences, Mashhad, Iran.
Objectives: Postpartum hemorrhage is a leading cause of maternal mortality worldwide. Emerging evidence suggests that the sumac plant possesses astringent and anti-inflammatory properties that may help reduce menstrual bleeding. Therefore, this study aimed to determine the effect of sumac capsules on postpartum bleeding among women at risk of excessive bleeding.
View Article and Find Full Text PDFNPJ Biofilms Microbiomes
December 2024
Department of Obstetrics and Gynecology, Nanfang Hospital, Southern Medical University, Guangzhou, Guangdong, China.
Fetal growth restriction (FGR) is a common complication of pregnancy, which seriously endangers fetal health and still lacks effective therapeutic targets. Clostridium difficile (C. difficile) is associated with fetal birth weight, and its membrane vesicles (MVs) are pathogenic vectors.
View Article and Find Full Text PDFNat Commun
December 2024
College of Life Sciences, Inner Mongolia Agriculture University, Hohhot, Inner Mongolia, P. R. China.
Zika virus (ZIKV) infection can result in a birth defect of the brain called microcephaly and other severe fetal brain defects. ZIKV enters the susceptible host cells by endocytosis, which is mediated by the interaction of the envelope (E) glycoprotein with cellular surface receptor molecules. However, the cellular factors that used by the ZIKV to gain access to host cells remains elusive.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!