Protein engineering and synthetic biology stand to benefit immensely from recent advances in silico tools for structural and functional analyses of proteins. In the context of designing novel proteins, current in silico tools inform the user on individual parameters of a query protein, with output scores/metrics unique to each parameter. In reality, proteins feature multiple "parts"/functions and modification of a protein aimed at altering a given part, typically has collateral impact on other protein parts. A system for prediction of the combined effect of design parameters on the overall performance of the final protein does not exist. Function2Form Bridge (F2F-Bridge) attempts to address this by combining the scores of different design parameters pertaining to the protein being analyzed into a single easily interpreted output describing overall performance. The strategy comprises of (a) a mathematical strategy combining data from a myriad of in silico tools into an OP-score (a singular score informing on a user-defined overall performance) and (b) the F2F Plot, a graphical means of informing the wetlab biologist holistically on designed construct suitability in the context of multiple parameters, highlighting scope for improvement. F2F predictive output was compared with wetlab data from a range of synthetic proteins designed, built, and tested for this study. Statistical/machine learning approaches for predicting overall performance, for use alongside the F2F plot, were also examined. Comparisons between wetlab performance and F2F predictions demonstrated close and reliable correlations. This user-friendly strategy represents a pivotal enabler in increasing the accessibility of synthetic protein building and de novo protein design.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1002/prot.25825 | DOI Listing |
Drug Dev Ind Pharm
January 2025
Department of Pharmaceutical Sciences and Drug Research, Punjabi University, Patiala, India.
Objective: The present study aims to develop and evaluate the voriconazole-loaded thermoresponsive hydrogel using tools.
Methods: Poloxamer 407 and PEG 400 were selected as the components from studies for thermoresponsive hydrogel of voriconazole. The cohesive energy density (CED) and solubility parameters (SP) were calculated using Biovia Material Studio 2022 software to predict the polymer-polymer miscibility and drug-polymer miscibility.
Lett Appl Microbiol
January 2025
National Institute of Plant Genome Research, New Delhi 110067, India.
This study explores the structural adaptations of the CRISPR-Cas9 system in halophilic bacteria, focusing on Cas9 protein of halophilic bacterium Salicibibacter cibi. Protein sequences were analysed using different tools such as ExPASy ProtParam for different physicochemical properties, PONDR web server for disordered regions, and InterPro server and WebLogo for domains. Protein structures were generated using the AlphaFold database, and the quality of the modelled structure was checked through PROCHECK.
View Article and Find Full Text PDFAppl Microbiol Biotechnol
January 2025
Department of Chemical Engineering, University of California, Santa Barbara, CA, 93106, USA.
The animal gut microbiome is a complex system of diverse, predominantly anaerobic microbiota with secondary metabolite potential. These metabolites likely play roles in shaping microbial community membership and influencing animal host health. As such, novel secondary metabolites from gut microbes hold significant biotechnological and therapeutic interest.
View Article and Find Full Text PDFToxicol Res (Camb)
February 2025
Department of Bioinformatics, Bharathidasan University, Tiruchirappalli, Tamil Nadu 620024, India.
Sugar substitutes are mostly artificial, man-made industrial products used as additives in food and beverages. Most of these substances flow through the digestive tract and food chains, becoming emerging organic contaminants in various abiotic and biotic environmental media. Here, we predict the mutagenicity and carcinogenicity of commonly used sugar substitutes using in silico based methods.
View Article and Find Full Text PDFTransl Lung Cancer Res
December 2024
Department of Physics and Center for Complexity and Biosystems, Università degli Studi di Milano and INFN, Milano, Italy.
Background: Non-small cell lung cancers (NSCLCs) with fusions are effectively treated with tyrosine kinase inhibitors (TKIs). The widespread use of next-generation sequencing (NGS) assays to study the molecular profile of NSCLCs, can identify rare fusion partners of . Therapy decisions are made without considering which fusion partner is present and its potential oncogenic properties.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!