d-Psicose 3-epimerase is an enzyme that catalyzes the synthesis of d-psicose from d-fructose. We cloned the d-psicose 3-epimerase from Ruminococcus sp. (RDPE) and expressed it in Bacillus subtilis A311. By a two-step pH regulation of segmented fermentation, we significantly improved the RDPE production and decreased the fermentation cost. The two-step regulation consisted of the first step maintained the pH value at 7.0 for 24 H and the second step adjusted the pH value up to 7.5 slowly for another 24 H. Finally, the RDPE production was increased to 74 U/mL, which was about 2.5-fold compared with the control. Our segmented fermentation strategy provides an important experimental basis for the industrial-scale production of RDPE.

Download full-text PDF

Source
http://dx.doi.org/10.1002/bab.1831DOI Listing

Publication Analysis

Top Keywords

d-psicose 3-epimerase
12
segmented fermentation
12
bacillus subtilis
8
regulation segmented
8
two-step regulation
8
rdpe production
8
enhanced production
4
d-psicose
4
production d-psicose
4
3-epimerase bacillus
4

Similar Publications

Optimization of fermentation conditions for whole cell catalytic synthesis of D-allulose by engineering Escherichia coli.

Sci Rep

December 2024

State Key Laboratory of Biobased Material and Green Papermaking, Qilu University of Technology, Shandong Academy of Science, Jinan, 250353, People's Republic of China.

D-allulose/D-psicose is a significant rare sugar with broad applications in the pharmaceutical, food, and other industries. In this study, we cloned the D-allulose 3-epimerase (DPEase) gene from Arthrobacter globiformis M30, using pET22b as the vector. The recombinant E.

View Article and Find Full Text PDF

d-Allulose 3-epimerase (DAEase) derived from has excellent properties in the catalytic production of d-allulose, a rare sugar with unique biological functions. However, the industrial application of DAEase (Cb-DAEase) for d-allulose production is hindered by its low enzyme activity, poor long-term thermostability, and pH tolerance. In this study, we identified potential noncatalytic residues in Cb-DAEase using methods such as proline substitution, surface charge engineering, and surface residue prediction.

View Article and Find Full Text PDF

D-Allulose 3-epimerase catalyzes C-3 epimerization between D-fructose and D-allulose was found in strain M30. The enzyme gene was cloned, and its recombinant enzyme and the mutant variants were expressed in Using the information of the sequence and model structure, we succeed in the improvement of melting temperature for the enzyme without significant loss of the enzyme activity by protein engineering method. The melting temperatures were increased by 2.

View Article and Find Full Text PDF

Tailored magnetic silica-immobilized D-allulose 3-epimerase with enhanced stability and recyclability for efficient D-allulose production.

Int J Biol Macromol

January 2025

School of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu 214122, China; International Joint Laboratory on Food Safety, Jiangnan University, Wuxi, Jiangsu 214122, China.

D-allulose, a low-calorie functional sweetener, is produced by the enzymatic conversion of d-fructose via D-allulose 3-epimerase (DAE) and holds significant market potential, particularly for individuals with obesity and diabetes. However, the limited reusability and stability of DAE have restricted its industrial application. In this study, we developed functional superparamagnetic supports by integrating diatomite, a biomineralized silica-based material, with cobalt ferrite nanoparticles through a green chemical co-precipitation method.

View Article and Find Full Text PDF

Advances in the biosynthesis of D-allulose.

World J Microbiol Biotechnol

November 2024

School of Pharmaceutical Sciences and Food Engineering, Liaocheng University, Liaocheng, China.

Article Synopsis
  • * There are two main ways to produce D-allulose: chemical synthesis, which can create unwanted byproducts, and biosynthesis, which uses enzymes to convert starch or glycerol into D-allulose more efficiently.
  • * The article reviews recent research on biosynthesis, highlighting the enzymes used, their properties, and the potential for improved production methods for D-allulose.
View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!