A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

Winter-Season Gaseous Nitrogen Emissions in Subtropical Climate: Impacts of Pig Slurry Injection and Nitrification Inhibitor. | LitMetric

Controlling nitrogen (N) losses from pig slurry (PS) is a challenge under no-till because amendments are left on the soil surface. We investigated the potential of shallow injection of PS, with and without addition of the nitrification inhibitor dicyandiamide (DCD), to abate gaseous ammonia (NH) and nitrous oxide (NO) emissions in winter crops in subtropical soils. Injection was compared with surface broadcasting of PS, with and without DCD. The significance of winter season on annual NO emissions was assessed. Injecting PS reduced NH volatilization compared with surface application. However, this reduction was partly offset because NO emissions increased by 77% (+1.53 kg NO-N ha) when PS was injected. Adding DCD to injected PS reduced NO emission below levels of surface-broadcast PS without the inhibitor, indicating that DCD may be a management option when injecting PS. Compared with a reference urea treatment, PS without DCD increased cumulative NO emissions 5.7-fold (from 613 to 3515 g NO-N ha) when injected, and 3.2-fold (from 613 to 1980 g NO-N ha) when surface applied. Adding DCD significantly reduced emissions with injected PS, whereas reduction was not always significant with surface-applied PS. Nitrous oxide emissions during the winter cropping season contributed 30 to 44% of annual emissions, indicating that controlling gaseous N losses in that season is required to reduce the environmental footprint of the whole cropping system. Overall, combining PS injection with DCD was an efficient practice for reducing winter-season gaseous N losses from no-till soils under subtropical climate.

Download full-text PDF

Source
http://dx.doi.org/10.2134/jeq2018.04.0137DOI Listing

Publication Analysis

Top Keywords

winter-season gaseous
8
emissions
8
subtropical climate
8
pig slurry
8
nitrification inhibitor
8
nitrous oxide
8
oxide emissions
8
emissions winter
8
compared surface
8
annual emissions
8

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!