The low energy structures of neutral and cationic pyrene clusters containing up to seven molecules are searched through a global exploration scheme combining parallel tempering Monte Carlo algorithm and local quenches. The potential energies are computed at the density functional based tight binding level for neutrals and configuration interaction density functional based tight binding for cations in order to treat properly the charge resonance. New simplified versions of these schemes are also presented and used during the global exploration. Neutral clusters are shown to be made of compact assemblies of sub-blocs containing up to three units whereas cations present a charged dimer or trimer core surrounded by neutral units. The structural features of the clusters are analyzed and correlated for the cation with the charge distribution. The stability of clusters is also discussed in terms of cohesive and evaporation energies. Adiabatic and vertical ionization potentials are also discussed.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC6917508 | PMC |
http://dx.doi.org/10.1021/acs.jpca.9b07007 | DOI Listing |
Mol Med
January 2025
Institute for Research in Biomedicine (IRB Barcelona), The Barcelona Institute of Science and Technology (BIST), Barcelona, Spain.
Background: Lysinuric protein intolerance is a rare autosomal disorder caused by mutations in the Slc7a7 gene that lead to impaired transport of neutral and basic amino acids. The gold standard treatment for lysinuric protein intolerance involves a low-protein diet and citrulline supplementation. While this approach partially improves cationic amino acid plasma levels and alleviates some symptoms, long-term treatment is suggested to be detrimental and may lead to life-threatening complications characterized by a wide range of hematological and immunological abnormalities.
View Article and Find Full Text PDFAngew Chem Int Ed Engl
January 2025
University Pardubice Faculty of Chemical Technology: Univerzita Pardubice Fakulta Chemicko-Technologicka, Department of General and Inorganic Chemistry, CZECHIA.
Wade's rules are a well-established tool for the description of the geometry of inorganic clusters. Among others, they state that a decrease or increase in charge is always accompanied by a change in the number of skeletal electron pairs (SEPs). This work reports the synthesis of the first cationic chalcogenaboranes closo-[12-X-2-IPr-1-EB11H10]BF4 (X = H, I; E = S, Se 3a/b, 4a/b) featuring the same SEP count as their neutral precursors, EB11H11, but bearing a positive charge.
View Article and Find Full Text PDFAcc Chem Res
January 2025
Molecular Sensing and Imaging Center, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210023, China.
ConspectusIons are the crucial signaling components for living organisms. In cells, their transportation across pore-forming membrane proteins is vital for regulating physiological functions, such as generating ionic current signals in response to target molecule recognition. This ion transport is affected by confined interactions and local environments within the protein pore.
View Article and Find Full Text PDFNanoscale
January 2025
School of Applied and Interdisciplinary Sciences, Indian Association for the Cultivation of Science (IACS), 2A and 2B Raja. S. C. Mullick Road, Jadavpur, Kolkata 700032, India.
Water-soluble π-conjugated luminescent bioprobes have been broadly used in biomedical research but are limited by the nonbiodegradability associated with their rigid C-C backbones. In the present work, we introduced three naphthalene monoimide (NMI)-functionalized amphiphilic fluorescent polyesters (P1, P2, and P3) prepared by transesterification of functional diols with an activated diester monomer of adipic acid. These polyesters featured a side-chain NMI fluorophore, imparting the required hydrophobicity for self-assembly in water and endowing the polymeric nanoassemblies with green fluorescence.
View Article and Find Full Text PDFNat Commun
January 2025
Laboratory for Chemistry and Life Science, Institute of Integrated Research, Institute of Science Tokyo, Yokohama, 226-8501, Japan.
Atomically flat two-dimensional networks of boron are attracting attention as post-graphene materials. An introduction of cations between the boron atomic layers can exhibit unique electronic functions that are not achieved by neutral graphene or its derivatives. In the present study, we propose a synthesis strategy for ion-laminated boron layered materials in a solution phase, which enables the preparation of analogs by changing the alkali-metal species.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!